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Abstract: Siparuna guianensis Aubl. is an essential-oil-producing plant with diverse ethnopharmaco-
logical uses and bioactive potential. This study aims to evaluate the intraspecific variation in the yield,
chemical composition, and antioxidant capacity of S. guianensis essential oil (EO). The specimens
(SG-1 to SG-6) were collected in June, five in the district of Outeiro and one in the Salvaterra munici-
pality (Brazil). EOs were obtained by hydrodistillation. The chemical compositions were analyzed by
gas chromatography coupled to a mass spectrometer (GC-MS). The DPPH radical scavenging tests
and inhibition of β-carotene oxidation by linoleic acid were carried out to evaluate the antioxidant
capacity of EOs. Principal components analyses were performed to verify the interrelationships
between the studied specimens’ oil yields, chemical composition, and antioxidant capacity. Regarding
chemical constituents, all studied samples showed the occurrence of spathulenol with an average
concentration of 25.6 ± 15.6%. The samples that presented the highest amounts of this constituent
were SG-5 (43.3%) and SG-1 (41.8%); the spathulenol amounts in other samples were 33.2% (SG-4);
13.8% (SG-2); 11.5% (SG-6) and 9.8% (SG-3). Moreover, there was no significant variability in yield
and antioxidant capacity using DPPH and β-carotene/linoleic acid; both tests found insignificant
values. This species presents a notable intraspecific chemical variability. Despite notable antitumor
activities, the plant presents intraspecific chemical variability in composition, which suggests new
studies to evaluate the impacts on bioactive compounds.

Keywords: sesquiterpenes; DPPH; lipid peroxidation; volatiles; chemometrics

1. Introduction

Siparuna guianensis Aubl. (Siparunaceae) is known by several popular names accord-
ing to the country and/or region of distribution in Brazil, such as “negramina”, “capitiú”,
”limão-bravo” and “cicatrizante-das-guianas”; it is considered an essential oil (EO) pro-
ducer [1].

This species is native to Brazil and morphologically presents as a shrub or medium-
sized tree. Its recurrence covers the Amazon, Caatinga, Cerrado, and Pantanal biomes. It
grows in soil with terrestrial substrate and has subglobose fruits varying from 1 to 1.5 cm
in diameter when ripe and dark red in color [2].

The S. guianensis leaf decoction is used as a drink for stomach ailments. The leaves
are used for compresses or poultices against headaches and rheumatism. Moreover, in
Panama and Guyana, extracts are used as insecticides. In Guyana, the leaves are also used
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to prepare fish traps due to the typical odor of the species that disguises human smell [1],
so this popular name means “Plant that smells like fish” (capitiú; Caá, “bush/plant” + pitiú,
“fish smell”) in the Tupi-Guarani language [3].

Preliminary reports on S. guianensis EO indicated favorable results in controlling
bacteria [4]. Thus, Gram-positive bacteria and fungi have been shown to be the most
susceptible to the effects of S. guianensis EO [4].

Plants belonging to the same genus can exhibit remarkable chemical variability. In
other words, this variability may be associated with several factors, such as the extraction
method, collection site, plant part, and genetic characteristics, among others [5,6]. In this
way, the same species can proliferate in different locations, manifesting qualitative and
quantitative variations in the chemical composition of the EOs. Therefore, the amounts
and/or major compounds can differ significantly [7].

Surprisingly, there is a dearth of research on the intraspecific chemical variability of
S. guianensis in the existing literature. This study, therefore, is of utmost importance as it
aims to investigate the potential influence of intraspecific variation on the yield, chemical
composition, and antioxidant capacity of S. guianensis leaf EO. The findings of this research
will significantly contribute to our understanding of the composition of their bioactive
chemical components and their phytotherapeutic potential.

2. Materials and Methods
2.1. Plant Material

The leaves (100 g) of six specimens were collected in the district of Outeiro and the
municipality of Salvaterra, state of Pará, Brazilian Amazon (Table 1) at 21 AMSL (height
above mean sea level) altitude (Figure 1). The plant samples were collected for the study
in June, transported in plastic bags with aeration, and placed in an air-conditioned room
at room temperature for drying for twelve days from the collection date. The botanical
identification was performed by Carlos Alberto Santos da Silva by comparing authentic
samples, and the exsiccates of the studied specimens were incorporated into the “Marlene
Freitas da Silva” herbarium. The collections were registered in the National Genetic
Heritage and Associated Traditional Knowledge Management System (SisGen) under
number A6689F5.
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Table 1. Location data collection and botanical identification.

Sample * Collection Site Voucher Coordinates

SG-1 Outeiro, Pará, Brazil MFS010318 1◦15′42.26′′ S. 48◦28′3.17′′ W
SG-2 Outeiro, Pará, Brazil MFS010604 1◦15′48.42′′ S. 48◦28′7.98′′ W
SG-3 Outeiro, Pará, Brazil MFS010605 1◦15′53.73′′ S. 48◦28′11.84′′ W
SG-4 Outeiro, Pará, Brazil MFS010606 1◦15′52.12′′ S. 48◦28′10.89′′ W
SG-5 Outeiro, Pará, Brazil MFS001082 1◦15′57.94′′ S. 48◦28′16.49′′ W
SG-6 Salva terra, Pará, Brazil MG246279 0◦45′45.02′′ S. 48◦30′58.47′′ W

* SG = Siparuna guianensis sample.

2.2. Extraction of Essential Oils and Yield

The extraction method was previously described by us [8]. Leaf samples (about
50 g) were crushed and subjected to EO extraction by hydrodistillation with a modified
Clevenger-type apparatus for 3 h in duplicates. EO yields were calculated at 0 moisture-free
biomass (BLU). The residual moisture of the material was obtained by drying in a drying
oven at 110 ◦C until a constant weight.

After extraction, to remove residual water, the EOs were centrifuged for 5 min at
3000 rpm with anhydrous sodium sulfate (Na2SO4), and again subjected to the centrifuge
under the same conditions. The oils were stored in amber ampoules and kept under
refrigeration at 5 ◦C. The EO yields (%) were calculated from moisture-free (BLU) samples
using the mass ratio, oil and moisture by the equation below.

EO yield% =
oil obtained (mL)

mass of material (g)×
(

mass of material (g) × moisture (%)
100

) (1)

2.3. Essential Oils Chemical Composition Analysis

The chemical compositions of the EOs were analyzed by gas chromatography coupled
to mass spectrometry (GC/MS) using the Shimadzu QP 2010 ultra system (Shimadzu.
Tokyo, Japan). The instrument was equipped with an AOC-20i auto-injector and an Rtx-
5MS silica capillary column (30 m long and 0.25 mm diameter; 0.25 µm film thickness)
supplied by Restek (Bellefonte, PA, USA). Operating conditions included a temperature
program of 60 ◦C to 240 ◦C (with a rise rate of 3 ◦C/min). Injector temperature at 250 ◦C;
the carrier gas used was helium at a rate of 1 mL/min, split-type injection 1:20 (5 µL of EO
in 500 µL of hexane). Mass spectra were obtained by electronic impact at 70 eV, and ion
source temperature was maintained at 200 ◦C.

The identification of the chemical components was based on the comparison of the
linear retention indices with the retention times of a series of homologous n-alkanes and
on the fragmentation patterns observed in the mass spectra, using reference data from the
Adams [9] and Flavor and Fragrance 2 [10] libraries.

2.4. DPPH Antiradical Capacity

The antiradical capacity was evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl;
Sigma-Aldrich, St. Louis, MO, USA, production batch STBH5699) free radical method.
Stock solutions of the EO were prepared at a concentration of 10 mg/mL in ethanol (Sigma-
Aldrich, production batch 459844). Aliquots of these solutions (50 µL) were mixed with
1900 µL of DPPH and 50 µL of 0.5% (m/m) Tween 20 (Dinâmica, production batch 100687).
The reaction medium was incubated for 120 min. The control was prepared by replacing
the EO solution with ethanol. Absorbances were measured every 30 min over 2 h at 517 nm
on a UV–Vis spectrophotometer ULTROSPEC 7000 (Biochrom US, Holliston, MA, USA).
The results were calculated using the following equation:

IDPPH (%) =

(
AbsB − AbsA

AbsB

)
× 100% (2)
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where AbsA and AbsB are the absorbances of the sample and control (blank), respectively.
To identify the antioxidant capacity equivalent to Trolox (Cayman Chemical Company,

production batch 0468715-21, Sigma-Aldrich, St. Louis, MO, USA), a calibration curve was
constructed with Trolox at concentrations of 30, 60, 150, 200, and 250 µg/mL in ethanol
under the same conditions used to determine the inhibition of EO. The capacity equivalent
to Trolox was calculated using Equation (3) below:

m
ET
g

= IDPPH × 100 × a × D (3)

where “a” is the angular coefficient of the curve and “D” is the dilution factor [11].

2.5. Lipid Peroxidation Capacity

A stock solution of β-carotene (Sigma-Aldrich, production batch MKCP5833)/linoleic
acid (Sigma-Aldrich, production batch SLCL0533) mixture was prepared as follows: 10 mg
of β-carotene was subsequently solubilized in 500 µL of chloroform (Sigma-Aldrich, pro-
duction batch 29031300) and reserved (solution A). In an amber vial, chloroform (HPLC
grade), 40 µL of linoleic acid, and 530 µL of concentrated Tween were added, and 1 mL of
chloroform and then mixed with solution “A”. The chloroform was completely evaporated.

Right away, 70 mL of oxygen-saturated water was added with vigorous stirring.
Samples were read with 200 µL diluted EO solution (1 mg/mL), 200 µL (1 mg/mL) of the
antioxidant Trolox, and a control group with 200 µL ethanol. The absorbance of the reaction
medium was measured at 470 nm and monitored in the interval from zero to 120 min
under heating at 30–40 ◦C. Antioxidant activity (AA%) was calculated in relation to the
percentage of inhibition in relation to the control used below. The experiments were carried
out in triplicate [12].

AA =
(Control0min − Control120min) −

(
Sample0min − Sample120min

)
Control0min − Control120min

× 100

2.6. Statistical Analyses and Bibliographic Search Criteria

To evaluate the intraspecific chemical variability, principal component analysis (PCA)
was used to compare the six samples with previously reported samples from the literature
(Appendix A). The components of oils with concentrations greater than 4% were used as
variables in OriginPro test software version 2024b (OriginLab Corporation, Northampton,
MA, USA). Statistical significance was assessed by the ANOVA away test followed by
Tukey’s test (p < 0.05) using the GraphPad Prism software version 5.0.

The analysis of bibliometric data was carried out by a literature search using keywords
of related articles to the theme proposed in this work, using the VOSViewer software
(version 1.6.15). The articles were downloaded from the databases in a supported software
format. The primary data retrieved from the databases include information related to
the article title, author names, keywords, and citation information, including reference
lists. These data were then used to generate a network map, a visual representation of the
interconnections between the keywords, which provided a comprehensive overview of the
research landscape [13].

3. Results
3.1. Yield and Chemical Composition of Essential Oils

The S. guianensis EO yields presented an average of 0.97%. The highest yield was
found in samples SG-6 (1.2%) and SG-2 (1.1%), displaying no statistical differentiation (see
Figure 2 below).

Regarding the chemical composition of the EOs, 82 chemical components were iden-
tified by GC-MS analysis (chromatograms are shown in Appendix C), comprising, on
average, 88.2% of the total content of the oils. The oxygenated sesquiterpenoid class was
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the most representative, with an average of 71.4% in the six studied specimens, as shown
in Table 2 below.
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Table 2. Chemical composition of essential oils from Siparuna guianensis samples.

RIC RIL Constituents SG-1 SG-2 SG-3 SG-4 SG-5 SG-6 Compounds
Classes

934 924 a α-Thujene 0.1 0.1 MH
934 932 a α-Pinene 0.4 0.1 0.3 MH
973 969 a Sabinene tr tr MH
977 974 a β-Pinene tr MH
1028 1024 a Limonene 0.1 tr MH
1337 1335 a δ-Elemene 0.2 0.2 0.2 SH
1350 1345 a α-Cubebene 1.5 2.4 0.3 SH
1377 1374 a α-Copaene 3.6 2.5 0.2 2.1 0.2 0.1 SH
1381 1387 a β-Bourbonene 3.9 2.6 0.4 3.8 0.4 1.3 SH
1387 1389 a β-Elemene 3.9 4.8 1.1 3.4 0.4 SH
1391 1387 a β-Cubebene 3.3 SH
1417 1410 a β-Longipinene 1.6 SH
1420 1417 a E-Caryophyllene 2.4 2.0 0.4 1.5 SH
1439 1437 a α-Guaiene 0.3 SH
1446 1436 a β-Copaene 0.2 SH
1454 1452 a α-Humulene 0.3 0.4 0.1 SH
1461 1464 a 9-epi-E- Caryophyllene 0.3 1.7 SH
1472 1482 a γ-Amorphene 1.0 0.5 0.8 0.8 SH
1478 1488 a Germacrene D 0.9 SH
1487 1486 a β-Selinene 0.3 SH
1477 1478 a γ-Muurolene 0.2 0.2 0.1 SH
1486 1492 a β-Selinene 0.6 SH
1489 1486 a Dauca-5,8-diene 0.6 SH
1491 1494 a Curzerene 2.7 0.9 SO
1495 1501 a Epizonarene 0.4 SH
1496 1486 a α-Amorphene 0.3 0.2 SH
1496 1495 a δ-Amorphene 1.3 SH
1498 1500 a Bicyclogermacrene 1.4 0.4 SH
1500 1500 a α-Muurolene 0.2 0.6 0.1 SH
1513 1514 a Cubebol 1.3 2.7 0.9 SO
1516 1513 a γ-Cadinene 1.3 0.5 0.6 SH
1517 1522 a δ-Cadinene 3.2 2.9 0.3 5.0 1.1 SH
1658 1651 a Pogostol 2.2 SO
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Table 2. Cont.

RIC RIL Constituents SG-1 SG-2 SG-3 SG-4 SG-5 SG-6 Compounds
Classes

1538 1544 a α-Calacorene 0.1 0.5 SH
1547 1548 a Elemol 0.5 4.4 30.3 11.5 SO
1559 1559 a Germacrene B 7.0 1.6 SH
1567 1562 a epi-Longipinanol 2.1 36.1 SO
1573 1582 a Viridiflorol 0.2 SO
1576 1574 b Ledol 0.3 SO
1579 1582 a Caryophyllene oxide 2.8 3.4 8.7 0.9 0.4 SO
1585 1577 a Spathulenol 41.8 13.9 9.8 33.3 43.3 11.5 SO
1588 1596 a Fokienol 4.6 4.4 SO
1592 1592 a Viridiflorol 1.6 SO
1598 1605 a Curzerenone 9.6 23.9 SO
1614 1604 a Khusimone 0.2 1.4 SO
1617 1608 a β-Atlantol 0.3 SO
1630 1627 a epi-Cubenol 0.4 1.5 1.0 0.6 SO
1639 1643 a 2-epi-β-Cedren-3-one 4.7 2.1 SO
1640 1646 a Agarospirol 3.7 SO
1641 1645 b τ-Muurolol 0.4 SO
1644 1645 a Cubenol 1.2 3.1 2.4 0.8 SO
1648 1644 a α-Muurolol 2.4 0.3 2.5 SO
1650 1640 a β-Eudesmol 4.3 SO
1652 1649 a α-Eudesmol 5.4 SO
1653 1652 a Himachalol 2.6 SO
1658 1651 a Pogostol 2.2 SH
1652 1644 b Aromadendrene 1.1 0.8 SH
1653 1661 a allo-Himachalol 0.3 SO
1656 1676 a Mustakone 0.3 0.7 16.5 1.2 SO
1657 1659 a Cadin-4-en-10-ol 1.0 SO
1683 1684 a epi-α-Bisabolol 0.3 SO
1683 1688 a Eudesma-4(15)-dien-1β-ol 7.8 SO
1690 1692 a Junicedranol 0.4 SO
1688 1693 a Germacrone 0.1 SO
1729 1734 a Eremofilone 1.3 SO
1728 1733 a iso-Bicyclogermacrenal 0.1 SO
1765 1766 a Drimenol 6.4 4.3 6.1 5.6 15.7 SO
1775 1773 a α-Costol 0.2 SO
1879 1884 b n-Hexadecanol 0.2 O
1943 1941 a Drimenin 7.0 SO
2019 2026 a E,E-Geranyllinalool 0.5 O
2101 2100 a Heneicosane 0.3 O
2603 2600 a n-Tetracosane 5.6 0.9 O

Monoterpene hydrocarbons 0.4 0.0 0.2 0.0 0.0 0.5
Oxygenated monoterpenoids 0.0 0.0 0.0 0.0 0.0 0.0
Sesquiterpene hydrocarbons 27.9 24.0 12.4 18.5 4.1 5.6

Oxygenated sesquiterpenoids 68.5 53.4 74.1 66.2 94.1 73.7
Others 0.0 6.6 0.0 0.9 0.0 0.0

Total identified 96.7 84.1 86.7 85.7 98.2 79.8

RIC = calculated retention index; RIL = literature retention index; a, Adams [14]; b, Mondello [10]; main constituents
in bold; standard deviation was less than 2.0 (n = 2).

One of the key findings in our study is the consistent presence of the oxygenated sesquiter-
penoid spathulenol in all the samples, with an average concentration of 25.6 ± 15.6%. Notably,
the samples SG-5 (43.3%) and SG-1 (41.8%) exhibited the highest amounts of this con-
stituent, while the other samples showed varying levels: 33.2% (SG-4); 13.8% (SG-2); 11.5%
(SG-6), and 9.8% (SG-3).

In addition to spathulenol, our analysis revealed the presence of other significant
constituents in the EO. For instance, elemol (0.5–30.3%) was found in samples SG-1 (0.5%),
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SG-2 (4.3%), SG-4 (11.5%), and SG-3 (30.3%), with an average concentration of 11.6 ± 13.2%.
However, it was not detected in samples SG-5 and SG-6, indicating the unique chemical
profiles of these samples.

Analogous to elemol, mustakone (0.3–16.5%) was also present in four of the six
specimens, with an average of 4.6 ± 7.9%, in SG-3 (16.5%), SG-1 (0.3%), SG-2 (0.7%), SG-4
(1.2%), SG-3 (30.3%), and absent in samples SG-5 and SG-6.

Also noteworthy is the occurrence of drimenol (4.3–15.7%) with an average content of
7.0 ± 4.6% in sample SG-6 (15.7%), the highest concentration, followed by samples SG-1
(6.4%), SG-2 (4.3%), SG-4 (5.6%), SG-5 (6.0%), and absent in the SG-3 sample.

Curzerenone (9.7–23.9%), with a mean of 16.8% ± 4.6, was identified only in samples
SG-6 (23.9%) and SG-2 (9.0%) and absent in the other samples. Likewise, the constituent
epi-longipinanol, with an average concentration of 19.1% ± 24.0%, showed the highest
concentration in sample SG-5 (36.1%), a low content in sample SG-1 (2.1%), and was not
detected in the other samples.

3.2. Intraspecific Chemical Variability and Occurrence

Regarding S. guianensis samples from the literature, the occurrence is reported only in
Brazil; the geographic distribution of specimens is shown in Figure 3. The 13 specimens
were mostly collected in the Brazilian northern region (7 specimens), followed by the
southeast region (2 specimens), and 1 specimen in the central-west region.
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Figure 3. Map of botanical material collection in studies found in the database.

The interrelationship of constituent classes of S. guianensis EOs specimens of this work
(SG-1 to SG-6) and literature (SG-7 to SG-19) were evaluated using principal components
analysis (PCA), based on the following classes: OM: oxygenated monoterpenoids; MH:
monoterpene hydrocarbons; SH: sesquiterpene hydrocarbons; OS: oxygenated sesquiter-
penoids; O: Other classes; Table 3.

The PCA represented 89.78% of the data variability (Figure 4). PC1 explained 40.37%
of the data, presenting positive correlations with the classes of monoterpene hydrocarbons
(MH: λ = 2.56757), oxygenated monoterpenoids (OM: λ = 2.21248), sesquiterpene hydro-
carbons (SH: λ = 0.18965); negative correlations with oxygenated sesquiterpenoids (OS:
λ = −2.86488), and others (O: λ = −0.00149). PC2 explained 27.93% and demonstrated
positive correlations with oxygenated monoterpenoids (OM: λ = 1.63089), oxygenated
sesquiterpenoids (OS: λ = 0.93739), and others (O: λ = 1.41573); negative correlations
with monoterpene hydrocarbons (MH: λ = −0.16124) and sesquiterpene hydrocarbons
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(SH: λ = −2.67177). PC3 described 21.48% and showed positive correlations with oxy-
genated monoterpenoids (OM: λ = 0.38911), sesquiterpene hydrocarbons (SH: λ = 1.73078),
and others (O: λ = 3.2476); negative correlations with monoterpene hydrocarbons (MH:
λ = −1.46655) and oxygenated sesquiterpenes (OS: λ = −0.90097).

Table 3. Compounds classes present in specimens used in the multivariate analysis.

MH OM SH OS O TI Ref.

SG-1 0.4 27.9 68.5 96.7 *
SG-2 24.0 53.4 6.6 84.1 *
SG-3 0.2 12.4 74.1 86.7 *
SG-4 18.5 66.2 0.9 85.7 *
SG-5 4.1 94.1 98.2 *
SG-6 0.5 5.6 73.7 79.8 *
SG-7 10.6 0.3 20.1 50.7 81.7 [15]
SG-8 0.4 0.2 13.8 76.7 91.1 [15]
SG-9 4.8 1.0 35.1 58.2 99.1 [15]
SG-10 0.1 0.4 99.3 99.8 [16]
SG-11 1.6 74.7 8.4 84.7 [16]
SG-12 15.7 1.6 68.9 86.2 [16]
SG-13 59.3 3.0 2.9 1.3 93.5 [16]
SG-14 27.4 14.2 38.9 80.5 [17]
SG-15 8.4 83.1 5.7 2.3 99.5 [18]
SG-16 50.5 23.7 17.5 7.6 99.3 [19]
SG-17 17.9 1.7 38.0 21.6 79.3 [20]
SG-18 0.7 0.3 38.6 59.0 98.6 [21]
SG-19 39.7 9.8 25.5 24.1 99.0 [4]

* = see Table 2; MH = Monoterpene Hydrocarbons; OM = Oxygenated Monoterpenoids; SH = Sesquiterpene
Hydrocarbons; OS = Oxygenated Sesquiterpenoids; O = Others; TI = Total Identified.
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The S. guianensis EO, extracted by hydrodistillation of leaves in this work (SG-1 to
SG-6), and those reported in the literature (SG-7 to SG-18) were classified into 12 groups
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according to PCA analysis. Group I (SG-1, SG-3, SG-4, SG-6, SG-8, and SG-18) was charac-
terized by the predominance of oxygenated sesquiterpenoids (OS: 59.0–76.7%) followed
by sesquiterpene hydrocarbons (SH: 5.6–38.6%) collected in Brazil from the state of Pará
(SG-1, SG-3, SG-4, SG-6, SG-18) and Acre (SG-8). Group II (SG-2) was characterized by
oxygenated sesquiterpenoids (OS: 53.4%), sesquiterpene hydrocarbons (SH: 24.0), and
others (O: 6.6%) of a specimen from Brazil (Pará state). Group III (SG-7 and SG-9) was
characterized by oxygenated sesquiterpenoids (OS: 49.7%), sesquiterpene hydrocarbons
(SH: 19.0%), and oxygenated monoterpenes (OM: 9.4%), both samples collected in Pará
state. Group IV (SG-5 and SG-10, collected in Pará and Rondônia states) was rich in oxy-
genated sesquiterpenoids (OS: 94.1 and 99.3%), followed by sesquiterpene hydrocarbons
(SH: 4.1 and 0.4%). Group V (SG-11) was characterized by sesquiterpene hydrocarbons
(SH: 74.7%) followed by oxygenated sesquiterpenoids (OS: 8.4%) occurring in a specimen
from Tocantins. Group VI (SG-12) was characterized by sesquiterpene hydrocarbons (SH:
68.9%), followed by monoterpene hydrocarbons (MH: 15.7%) in a sample from Rondônia
state. Group VII (SG-17) was characterized by sesquiterpene hydrocarbons (SH: 38.0%),
oxygenated sesquiterpenoids (OS: 21.6%) and monoterpene hydrocarbons (MH: 17.9%)
collected in Minas Gerais state. Group VIII (SG-13) was characterized by hydrocarbon
monoterpenes (MH: 59.3%) followed by oxygenated monoterpenoids (OM: 30.0%) from
Rondônia. Group IX (SG-14) characterized by oxygenated sesquiterpenoids (OS: 38.9%),
monoterpene hydrocarbons (MH: 27.4%) and sesquiterpene hydrocarbons (SH: 14.2%)
collected in Amapá state. Group X (SG-15) was rich in oxygenated monoterpenoids (OM:
83.1%), and low amounts of monoterpene hydrocarbons (MH: 8.4%) and oxygenated
sesquiterpenoids (OS: 5.7%) collected in São Paulo state. Group XI (SG-19) was charac-
terized by monoterpene hydrocarbons (MH: 39.7%), sesquiterpene hydrocarbons (SH:
25.5%), and oxygenated sesquiterpenoids (OS: 24.1%) collected in Tocantins state. Group
XII (SG-16) was characterized by monoterpene hydrocarbons (MH: 50.5%), oxygenated
monoterpenoids (OM: 23.7%), and sesquiterpene hydrocarbons (SH: 17.5%) from Rondônia.

Sample SG-2 stands out in this study, due to the “other” class, as it presents a higher
concentration compared to the other samples with the compound n-tetracosane, an unusual
compound among samples due to this class, which is a determining factor for the formation
of an isolated group (group II). The compound n-tetracosane found only in sample SG-2, is
a 24-carbon linear hydrocarbon. According to previous reports it is a promising molecule
with its potential uses as a biopesticide in the control of insects and larvae [22]. In addition
to another potential explored in a preliminary study that points to pharmacological use,
the bioactive shows significant cytotoxic action using MTT cancer cell testing (in vitro) [23].

The variability between the S. guianensis samples analyzed demonstrates variability
in the chemical composition of the major constituents belonging to the classes of groups
formed by the PCA (Appendix A).

It is notable that the 19 examples of EO oils based on their chemical composition were
organized into 19 distinct chemical profiles according to the majority chemical composition
(>5%) as follows: Profile I (SG-1) stood out for the presence of spathulenol (41.8%) and
drimenol (6.4%). Profile II (SG-2) was composed of spathulenol (13.8%) and curzerenone
(9.6%). Profile III (SG-3) had as main constituents elemol (30.3%), mustakone (16.52%),
and spathulenol (9.8%). Profile IV (SG-4) revealed significant levels of spathulenol (33.2%),
elemol (11.5%), and caryophyllene oxide (8.7%). Profile V (SG-5) exhibited a mixture of
spathulenol (43.3%) and epi-longipinanol (36.1%). Profile VI (SG-6) was characterized by
the presence of curzerenone (23.9%), drimenol (15.7%), and spathulenol (11.5%). Profile VII
(SG-7) was dominated by epi-α-bisabolol (25.1%), spathulenol (15.7%), and α-pinene (6.3%).
Profile VIII (SG-8) presented spathulenol (22.0%), selin-11-en-4α-ol (19.4%), elemol (10.0%),
and β-eudesmol (10.0%). Profile IX (SG-9) had as its main constituents atractylone (31.4%)
and germacrone (23.2%). Profile X (SG-10) revealed the predominance of E-nerolidol, with
99.3%. Profile XI (SG-11) described γ-cadinene in a proportion of 47.8%, and γ-elemene
in 12.6%. Profile XII (SG-12) was characterized by the presence of valencene (27.5%), E-
caryophyllene (21.6%), and zingiberene (13.0%). Profile XIII (SG-13) presented α-pinene in
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27.6%, 1,8-cineole in 22.6%, and p-cymene in 9.8%. Profile XIV(SG-14) exhibited a mixture
between α-muurolol at 33.2% and terpinolene at 17.2%. Profile XV(SG-15) stood out for
the significant presence of decanoic acid in 46.6%, and 2-undecanone in 31.7%. Profile
XVI (SG-16) revealed the abundance of β-myrcene at 45.6%, and 2-undecanone at 17.8%.
Profile XVII (SG-17) had as its main constituents β-myrcene in 13.1%, and germacrene D
in 8.7%. Profile XVIII (SG-18) was characterized by the presence of atractylone in 18.6%,
trans-β-elemenone in 11.8%, germacrene D in 7.6%, curzerene in 7.1%, γ-elemene in 7.0%
and Profile XIX (SG-19) indicated the presence of the constituents β-myrcene (39.7%),
epi-curzerenone (18.2%) and germacrene D (14.3%).

As observed, the 19 S. guianensis specimens were extracted using the same extraction
method (hydrodistillation) and the same plant part (leaves). The EO chemical variability
may be related to other issues, such as the age, size, stage of development of the plant at
the time of collection [5]. The understanding of the chemical composition of the plant is
paramount as recent research has shown promising pharmacological results on in vivo
antitumor activity in the treatment of Ehrlich tumor attributed to the action of bioactive
components from the plant under analysis [3].

To find the most widespread topics about S. guianensis EOs and identify their ana-
lyzed bioactive potentials, we investigated the co-occurrence of similar terms in titles
and abstracts of 198 keywords found in the Scopus and PubMed databases from 1990
to 2024. Figure 5 represents this research and its associations. The size of the node
indicates the extent of searches for the term. In other words, the larger the node, the
more frequently the term was searched. The search terms are grouped according to
their similarity. Thus, there was the grouping of 13 clusters (13 colors in Figure 5); the
most prominent cluster (red) includes terms related to in vivo tests, such as “animal”,
and “feeding behavior”, among others, followed by the yellow, orange, green, and
blue clusters suggest bioactive tests with pharmacological uses and biological activities
“antioxidants”, “anti-inflammatories”, “anti-cancer”. The purple and pink cluster pro-
poses the use of “oils, volatile”, “plant extracts” and analysis of chemical composition,
encompassed by green with “natural products”, “phytotherapy”, cyan cluster adds
biopesticides “biological control” uses.
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The bibliometric analysis highlights the significant bioactive potential of S. guianensis,
especially regarding its antitumor properties. The presence of a remarkable intraspecific
chemical variability in this species is a relevant aspect to be considered. Such chemical
diversity can have a significant impact on the effectiveness and consistency of the antitu-
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mor effects associated with the plant. Therefore, conducting new studies is necessary to
deepen the understanding of the impact of this variability in the chemical composition
and its effect on the therapeutic use of the plant. This investigation aims to ensure more
reliable and consistent results, thus expanding the possibilities of therapeutic application of
S. guianensis.

3.3. Antioxidant Capacity

The evaluation of the antioxidant capacity of the six samples was carried out using
two different methods. All six specimens were subjected to the DPPH free radical capture
method and lipid peroxidation inhibition assay in the system composed of β-carotene and
linoleic acid.

3.3.1. DPPH Anti-Radical Evaluation

The DPPH assay consists of free radicals. The mechanism of action aims to identify the
oil’s ability to inhibit the reactivity of 1,1-diphenyl-2-picrylhydrazyl. Through the donation
of a hydrogen radical, when a compound can donate an atom of hydrogen, the DPPH
radical is reduced simultaneously and the violet color is lost, then the free radical formed
tends to undergo successive reactions to create a stable product. While DPPH can accept
a hydrogen atom or an electron to form a stable, diamagnetic molecule, the oxidation of
DPPH is difficult and irreversible [24].

The results of inhibitions (Table A2, Figure 6) do not demonstrate prominent inhi-
bitions. The SG-2, SG-4, and SG-5 were similar in the Tukey test (p > 0.05), but the SG-3
showed a significant difference from the others.
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Figure 6. Comparison of inhibitions of Siparuna guianensis essential oils against DPPH. Values with
the same letters in the bars do not differ statistically in the Tukey test (p > 0.05).

The antioxidant effect is proportional to the disappearance of radicals in the test
samples. This reaction is stoichiometric in relation to the number of hydrogen radicals
absorbed [25]. In this way, the total antioxidant capacity is expressed in Trolox equivalent
capacity (TEAC, mg TE/g). The SG-4 value (108.1 ± 11.5) is about eight times lower than
the Trolox, and the specimens have a low inhibition index.

The specimens’ chemical composition is predominantly composed of oxygenated
sesquiterpenoids. Since sesquiterpenes usually have low antioxidant action, S. guianensis
EO compounds are not capable of donating hydrogen atoms to reduce the DPPH radical,
which causes low antioxidant activity measured in the test [26]. Moreover, there is a lack
of preliminary in vitro antioxidant studies in the literature regarding the S. guianensis
anti-DPPH activity, leaving a gap for comparison.
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3.3.2. Lipid Peroxidation Activity

The co-oxidation method of the β-carotene/linoleic acid system consists of analyzing
the EO’s ability to prevent and protect the oxidation of β-carotene against free radicals
resulting from the peroxidation reaction of linoleic acid in contact with saturated oxygen
water. Therefore, simulating an in vitro reactive oxygen species (ROS) attack process
against important biomolecules to cellular biochemistry and the protective capacity to give
bioactive compounds in experimentation [27].

Regarding the S. guianensis lipid peroxidation inhibitions (Figure 7 and Table A3),
insignificant inhibitions were found in the EO samples, with no emphasis between them,
as they are considered statistically similar in the Tukey test (p > 0.05). Thus, the percentage
found to be less than 40% inhibition signals that antioxidant capacity is low [28].
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Appendix A 

Table A1. Siparuna guianensis essential oil composition. 
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Plant Part/ 
Extraction 
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Oil 
Yield 
(%) 

Ref. 

SG-1 Outeiro, Pará, Brazil Leaves (HD) 
Spathulenol (41.77%),  

drimenol (6.44%), SO: 68.4%, SH: 27.9% 0.89% * 

SG-2 Outeiro, Pará, Brazil Leaves (HD) Spathulenol (13.85%),  
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mustakone (16.52%),  
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SO: 74.1%, SH: 12.4% 0.89% * 

SG-4 Outeiro, Pará, Brazil Leaves (HD) Spathulenol (33.25%),  SO: 66.2%, SH: 18.5% 0.81% * 

Figure 7. Comparison of Siparuna guianensis inhibition in the lipid peroxidation test. Values with the
same letters in the bars do not differ statistically in the Tukey test (p > 0.05).

In previous studies that used the β-carotene/linoleic acid method to evaluate antiox-
idant capacity, a value of 15.5% was observed, approximately six times lower than the
Trolox standard (90.9%) [3]. According to Andrade et al. [20], this indicates a moderate
antioxidant capacity. However, this result differs from the values found in the present
study (2.1–9.1%).

4. Conclusions

The effect of intraspecific chemical variability on Siparuna guianensis essential oil was
significant with the formation of 19 chemical profiles; six profiles were reported for the
first time. This variability can be related to different collection locations, seasonality and
genetic variability.

There was no significant variability in relation to yield or antioxidant capacity through
DPPH and β-carotene/linoleic acid. Moreover, due to the high pharmacological potential
of the plant as an antitumor agent, it is necessary to consider the intraspecific variability
in the chemical composition of S. guianensis, which suggests future studies focusing on
seasonality, and comparisons between different plant tissues.
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Appendix A

Table A1. Siparuna guianensis essential oil composition.

Sample
Code Occurrence Plant Part/

Extraction Type Primary Components (>5%) Major Classes Oil
Yield (%) Ref.

SG-1 Outeiro, Pará,
Brazil Leaves (HD) Spathulenol (41.77%),

drimenol (6.44%),
SO: 68.4%,
SH: 27.9% 0.89% *

SG-2 Outeiro, Pará,
Brazil Leaves (HD) Spathulenol (13.85%),

curzerenone (9.60%),
SO: 53.4%, SH:
24.0%, O: 6.6% 1.13% *

SG-3 Outeiro, Pará,
Brazil Leaves (HD)

Elemol (30.30%),
mustakone (16.52%),
spathulenol (9.81%)

SO: 74.1%,
SH: 12.4% 0.89% *

SG-4 Outeiro, Pará,
Brazil Leaves (HD)

Spathulenol (33.25%),
elemol (11.47%),

caryophyllene oxide (8.69%)

SO: 66.2%,
SH: 18.5% 0.81% *

SG-5 Outeiro, Pará,
Brazil Leaves (HD) Spathulenol (43.31%),

epi-longipinanol (36.08%) SO: 94.1% 0.91% *

SG-6 Salva terra,
Pará, Brazil Leaves (HD)

Curzerenone (23. 92%),
drimenol (15. 72%),

spathulenol (11. 52%)
SO: 76.7%,
SH: 5.6% 1.21% *

SG-7 Moju, Pará,
Brazil Leaves (HD)

epi-α-Bisabolol (25.10%),
spathulenol (15.70%),
α-pinene (6.30%)

SO: 58.2%, SH:
35.1%, MH:

10.6%
0.20% [15]

SG-8 Rio Branco,
Acre, Brazil Leaves (HD)

Spathulenol (22.00%),
selin-11-en-4α-ol (19.40%),

elemol (10.00%),
β-eudesmol (10.00%)

SO: 76.7%,
SH: 13.8% 0.1% [15]

SG-9 Belém, Pará,
Brazil Leaves (HD) Atractylone (31.40%),

germacrone (23.20%)

SO: 58.2%, SH:
35.1%, MH:

4.8%
0.3% [15]

SG-10
Porto Velho,
Rondônia,

Brazil
Leaves (SD) (E)-Nerolidol (99.30%) SO: 99.3% 0.5% [16]

SG-11
Porto Velho,
Rondônia,

Brazil
Leaves (SD) γ-Cadinene (47.80%),

γ-elemene (12.60%)
SH: 74.7%,
SO: 8.4% 0.5% [16]

SG-12
Porto Velho,
Rondônia,

Brazil
Leaves (SD)

Valencene (27.50%),
E-caryophyllene (21.60%),

zingiberene (13.00%)

SH: 68.9%,
MH: 15.7% 0.5% [16]

SG-13
Porto Velho,
Rondônia,

Brazil
Leaves (SD)

α-Pinene (27.60%),
1,8-cineole (22.60%),
β-cymene (9.80%)

MH: 59.3%.
MO: 30.0% 0.5% [16]

SG-14 Macapá,
Amapá, Brazil Leaves (SD) α-Muurolol (33.20%),

terpinolene (17.20%)
SO: 38.9%, MH:

27.4%, SH:
14.2%

1.50% [17]

SG-15
Mogi-Guaçu,

São Paulo,
Brazil

Leaves (SD) Decanoic acid (46.60%),
2-undecanone (31.70%)

MO: 83.1%,
SO: 5.7% 0.49% [18]

SG-16
Porto Nacional,

Tocantins,
Brazil

Leaves (HD) β-Myrcene (45.62%),
2-undecanone (17.83%)

MH: 50.5%,
MO: 23.7%, SH:

17.5%
ND [19]

SG-17 Lavras, Minas
Gerais, Brazil Leaves (HD)

β-Myrcene (13.14%),
germacrene D (8.68%),
spathulenol (4.16%),
τ-muurolol (4.14%),
α-bisabolol (3.53%)

SH: 38.0%, SO:
21.6%, MH:

17.9%
ND [20]

SG-18 Belém, Pará,
Brazil Leaves (HD)

Atractylone (18.65%),
trans-β-elemenone (11.78%),

germacrene D (7.61%),
curzerene (7.10%),
γ-elemene (7.04%)

SO: 59.0%,
SH: 38.6% 1.42% [21]

SG-19
Porto Nacional,

Tocantins,
Brazil

Leaves (HD)
β-Myrcene (39.67%),

epi-curzerenone (18.16%),
germacrene D (14.34%)

MH: 39.7%.
SH: 25.5% ND [4]

SG = Siparuna guianensis samples; HD = Hydrodistillation; SD = Steam distillation; NI = Not described;
MH = Monoterpenes Hydrocarbons; MO = Oxygenated Monoterpenes; SH = Sesquiterpene Hydrocarbon;
SO = Oxygenated Sesquiterpenes; O = Others; * = see Table 2.
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Appendix B

Table A2. Antioxidant activity of DDH inhibition essential oils.

Sample Inhibition (%) * TEAC

SG1 6.9 a 77.8 ± 9.0
SG2 9.3 b.d 103.9 ± 13.
SG3 3.7 c 41.3 ± 3.1
SG4 9.6 d 108.1 ± 11.5
SG5 8.3 a,b,d 93.0 ± 6.9
SG6 7.2 a,b 80.9 ± 2.1

* Mean ± Standard deviation. Values with the same letters in the column do not differ statistically in the Tukey
test (p > 0.05).

Appendix C

Table A3. Antioxidant activity of essential oils in β-carotene assay.

Sample Inhibition (%) *

SG1 2.1 ± 0.8 a

SG2 5.4 ± 1 a.b

SG3 8.7 ± 1.6 b

SG4 8.3 ± 1.7 b

SG5 8.2 ± 0.6 b

SG6 9.1 ± 1.7 b

Trolox 80.5 ± 0.3 d

* Mean ± Standard deviation. Values with the same letters in the column do not differ statistically in the Tukey
test (p > 0.05).
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Figure A1. Ion-chromatogram from essential oil extracted from sample SG-1.
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