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Abstract: Aniba canelilla (Kunth) Mez essential oil has many biological activities due to its main
compound 1-nitro-2-phenylethane (1N2F), followed by methyleugenol, a carcinogenic agent. This
study analyzed the influence of seasonality on yields, antioxidant capacity, and 1N2F content of
A. canelilla leaf and twig essential oils. Essential oils (EOs) were extracted with hydrodistillation and
analyzed with gas chromatography coupled to mass spectrometry and a flame ionization detector.
Antioxidant capacity was measured using the free radical scavenging method (DPPH). Chemometric
analyses were carried out to verify the influence of climatic factors on the production and composition
of EOs. 1-Nitro-2-phenylethane was the major constituent in A. canelilla EOs throughout the seasonal
period (68.0–89.9%); methyleugenol was not detected. Essential oil yields and the 1N2F average did
not show a statistically significant difference between the dry and rainy seasons in leaves and twigs.
Moderate and significant correlations between major compounds and climate factor were observed.
The twig oils (36.0 ± 5.9%) a showed greater antioxidant capacity than the leaf oils (20.4 ± 5.0%). The
PCA and HCA analyses showed no statistical differences between the oil samples from the dry and
rainy seasons. The absence of methyleugenolin in all months of study, described for the first time,
makes this specimen a reliable source of 1N2F.

Keywords: benzenoids; precious bark; volatiles; Aniba canelilla; hydrodistillation; antioxidant capacity

1. Introduction

The Lauraceae comprises around 50 genera and 2500 to 3000 species distributed in
tropical and subtropical regions; mainly, taxa are aromatic trees and shrubs rich in essential
oils [1,2]. Lauraceae is native and non-endemic in Brazil, with 27 genera and 466 species of
trees, shrubs, and lianas, known as climbers [3].

The Lauraceae has economic potential in several industrial sectors, such as food,
wood, pharmaceuticals, and perfumery. Regarding its ethnobotany, its taxa are used to
treat several pathologies [4,5]. Among the genera of this family, Aniba species have many
scientific studies highlighting their pharmacological potential, emphasizing A. rosaeodora
Ducke, A. parviflora (Meisn.) Mez, and A. canelilla (Kunth) Mez [6,7].
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Aniba canelilla (Kunth) Mez is an aromatic species popularly known as “precious bark”,
“false cinnamon”, “canelão”, and “precious leaf”. It is native and endemic to Brazil and
found in the north, central-west, and southeast regions of the country. It is widely used
in popular medicine to treat inflammation, intestinal pain, respiratory diseases, microbial,
and parasitic infections [3,8]. Furthermore, A. canelilla essential oil is a natural antioxidant
for food preservation and disease control, presenting high potential for use in cosmetics
and pharmaceutical products [8].

In the aromatic and medicinal plants market, essential oils (EOs) are widely sought
after due to their applications in perfumery, beverages, food, and cooking. EOs can be
present in different parts of plants, such as leaves, seeds, stems, bark, and roots [9]. More-
over, they are used in traditional medicine as antimicrobial agents, as they are biologically
active compounds with important health effects [10,11].

A. canelilla essential oil has antioxidant, antinociceptive, anti-inflammatory, anxiolytic,
anticholinesterase, fungicidal, trypanocidal, leishmanicidal, cardiomoderating, and hy-
potensive properties [8]. The odorous principle of A. canelilla leaves, bark, and wood
comes from the compound 1-nitro-2-phenylethane. This constituent is volatile, with an
aroma similar to cinnamon, and stands out for its anti-inflammatory, antinociceptive, and
vasorelaxant potential [12–14].

Nitro-substituted compounds have demonstrated broad biological activities and their
pharmacological potential has been reviewed [15]. Furthermore, the presence of the hy-
drophobic phenyl group makes 1N2F lipophilic and affects its membrane and blood–brain
barrier transport ability [16,17].

On the other hand, there are reports in the literature indicating the presence of
methyleugenol in the A. canelilla essential oil, which is considered a carcinogen and muta-
gen with a solid link to safrole [18,19]. Due to the biological activities of this species and
its possible industrial and pharmacological applications, the objective of this study was
to evaluate its antioxidant potential and the influence of climatic factors on the yields and
1-nitro-2-phenylethane contents of the essential oil of A. canelilla.

2. Results and Discussion
2.1. Essential Oil Yields vs. Environmental Conditions

The climatic parameters (precipitation, temperature, and insolation) were monitored
from August 2021 to July 2022 to evaluate the influence of seasonality on the composition
and yields of A. canelilla essential oil. The average precipitation values ranged from
116.6 mm (July) to 527.4 mm (March), the average temperature from 25.9 ◦C (January) to
27.6 ◦C (October), and the values of insolation from 105.4 h (March) to 256.1 h (August).
Based on rainfall data, the months of March to May comprise the rainy season with an
average rainfall of 472.5 ± 60.2 mm, and the months of August to February, in addition
to June to July, comprise the dry season with an average rainfall of 237.2 ± 67.8 mm
(see Figure 1). In the seasonal study of Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson
(Verbenaceae), the dry season also comprised the months of August to February and the
rainy period from March to May [20].

The A. canelilla specimen was collected in the city of Belém, located in northern Brazil,
which has a predominantly hot and humid climate. The climate of the Amazon region has
only two delimited seasons, the rainy and the dry. Despite this, the seasons can change
according to the atmospheric phenomena in the region [21].

In this seasonal study, the oil yields of A. canelilla leaves ranged from 1.1% (February)
to 1.7% (July), and of the twigs ranged from 0.4% (June) to 1.2% (September). The essential
oil yields of A. canelilla leaves (1.1–1.7%; 1.3 ± 0.2) were higher than the twigs (0.4–1.2%;
0.8 ± 0.2) in all months of this study, except in September, where they were the same
(1.2%). Furthermore, the average yield of leaves (1.3 ± 0.2) and twigs (0.8 ± 0.2) showed a
statistical difference (p < 0.05) in the Tukey test.
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Figure 1. Relationship between climatic parameters and essential oil yields of leaves and twigs of
Aniba canelilla in this seasonal study.

A specimen of A. canelilla collected in Belém, Pará, Brazil, presented an oil yield of 1.5%
for leaves and 1.0% for twigs [6]. Another specimen collected in Amazonas also showed
higher oil yields in the leaves (1.3%) than in the twigs (1.2%) [22].

The essential oil yields of leaves (L) and twigs (T) did not show a statistically significant
difference between the dry (L: 1.3 ± 0.2; T: 0.8 ± 0.2) and rainy (L: 1.3 ± 0.3; T: 0.8 ± 0.2)
seasons. In this sense, the influence of seasonality on the EOs of a specimen of Psidium
acutangulum DC. (Myrtaceae) collected in the city of Belém, Pará, Brazil, has been reported;
the oil yields also showed no statistical differences between the dry (0.7 ± 0.3%) and rainy
(0.9 ± 0.2%) periods [23]. Regarding climatic factors vs. essential oil yields, the Pearson
correlation coefficient (r) analysis showed that there was no significant correlation between
the yields of A. canelilla leaves and twigs, respectively, with regard to temperature (r = 0.01
and r = −0.11), insolation (r = 0.30 and r = −0.20), or precipitation (r = −0.17; r = 0.10), as
shown in Table 1.

Table 1. Correlation between yields, 1-nitro-2-phenylethane, main constituents, classes, and climatic
parameters.

Yield/
Components

Temperature Insolation Precipitation

L T L T L T

Oil yield 0.01 −0.11 0.30 −0.20 −0.17 0.10

1-nitro-2-phenylethane −0.59 * −0.47 −0.16 −0.37 0.61 * 0.60 *
Linalool 0.49 0.56 0.12 0.38 −0.18 −0.65 *

β-longipinene 0.55 0.26 0.68 * −0.14 −0.64 * −0.23
E-caryophyllene 0.43 0.06 0.16 −0.10 0.29 −0.33
Selin-11-en-α-ol −0.24 −0.68 * −0.13 −0.55 * −0.37 0.72 *

Caryophyllene oxide −0.11 −0.01 −0.37 −0.14 0.29 −0.26
α-pinene 0.29 0.65 * 0.24 0.67 * −0.33 −0.42

Monoterpene hydrocarbons 0.35 0.69 * 0.28 0.71 * −0.40 −0.51
Oxygenated monoterpenes 0.78 * 0.54 0.41 0.33 −0.60 * −0.63 *

Sesquiterpene hydrocarbons 0.70 * −0.08 0.49 −0.13 −0.70 * −0.22
Oxygenated sesquiterpenes −0.13 −0.70 * −0.36 −0.43 0.41 0.48

Benzenoids −0.58 * −0.48 −0.14 −0.38 0.58 * 0.61 *

* Significant correlation (p < 0.05); L: leaves; T: twigs.
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Yields and composition of secondary metabolites can be affected from plant formation
to final isolation [24]. For example, the EO present in the leaves of Nectandra grandiflora
Nees (Lauraceae), collected in the Rio Grande do Sul (Brazil), showed seasonal variabil-
ity, with the highest yield in spring (0.75 ± 0.06%) and the lowest yield in the winter
(0.39 ± 0.02%) [25]. Moreover, Ocotea porosa (Nees & Mart.) had an oil content of 0.82%,
while Ocotea quixos (Lam) Kosterm had an EO content equivalent to 1.6% [25].

2.2. Chemical Composition vs. Environmental Conditions

GC-MS and GC-FID identified and quantified the oil constituents from the leaves and
twigs of A. canelilla during the twelve months of this study (August 2021 to July 2022). In
total, 61 volatile compounds were identified, representing an average of 98.3% of the total
composition of the oils (Tables 2 and A1). The predominant class of EOs in the leaves (L)
and twigs (T) were benzenoids (L: 70.8–87.5%; T: 72.5–91.0%), followed by oxygenated
monoterpenoids (L: 2.3–4.5%; T: 5.3–21.8%), sesquiterpene hydrocarbons (L: 1.1–10.5%;
T: 0.1–0.5%), oxygenated sesquiterpenoids (L: 1.4–9.1%; T: 0.9–3.9%), and monoterpene
hydrocarbons (L: 0.1–4.8%; T: 0.1–5.9%).

The main compound of the EOs was 1-nitro-2-phenylethane (1N2F) in the leaves
(68.0–85.2%; 78.7 ± 5.5%) and twigs (71.3–90.0%; 80.7 ± 6.6%). However, unlike the oil
yields, there was no statistically significant difference in the Tukey test (p > 0.05) between
the amounts of 1N2F in the leaves and twigs of A. canelilla.

The 1N2F content ranged from 68.0% (February) to 85.2% (March) in the leaves and
71.3% (December) to 89.9% (March) in the twigs. The average amounts of 1N2F in the
leaves and twigs of A. canelilla were higher in the rainy season (F: 84.5 ± 1.2; T: 87.8 ± 2.1)
than in the dry season (L: 76.8 ± 5.0; T: 78.3 ± 5.8). The average concentration of 1N2F
in the leaves (76.9 ± 4.1%) and twigs (71.3–81.7%) did not show a statistical difference
(p < 0.05) in the Tukey test. Furthermore, the average contents of 1N2F did not show a
statistically significant difference between the dry (L: 76.8 ± 5.0; T: 78.3 ± 5.8) and rainy (L:
84.5 ± 1.2; T: 87.8 ± 2.1) seasons in the leaves and twigs.

Other constituents were also identified in A. canelilla EOs leaves and twigs, such as the
monoterpene hydrocarbon α-pinene (L: 0.0–2.2%; 0.5 ± 0.6%; T: 0.0–2.2%; 0.7 ± 0.8%) and
the oxygenated monoterpenoid linalool (L: 1.9–3.5%; 2.7 ± 0.5%; T: 4.5–20.1%; 11.3 ± 4.7%),
the sesquiterpene hydrocarbons E-caryophyllene (L: 0.2–6.6%; 2.5 ± 2.3%; T: 0.1–0.3%;
0.2 ± 0.1%) and β-longipinene (L: 0.0–4.8%; 1.4 ± 1.4%; T: < 0.1%), and the oxygenated
sesquiterpenoids selin-11-en-4α-ol (L: 0.0–1.1%; 0.5 ± 0.5%; T: 0.0–2.5%; 1.2 ± 1.0%) and
caryophyllene oxide (L: 0.7–5.6%; 4.5 ± 1.4%; T: 0.0–0.4%; 0.2 ± 0.1%). The chemical
structures of these compounds are shown in Figure 2.

The 1N2F (L: 71.2%; T: 68.2%) [14] and (L: 88.3%; T: 70.9%) [6] was previously identified
in high amounts in A. canelilla EOs. Both studies found that the levels of 1N2F in the leaves
were higher than in the twigs, which vary from the results of this study.

Based on the analysis of the Pearson correlation coefficient (r) shown in Table 1, there
was a moderate and significant positive correlation (p < 0.05) between precipitation and
the 1N2F contents in the leaves (r = 0.61) and twigs (r = 0.60), and a moderate negative
correlation between 1N2F and temperature (r = −0.59) in the leaves. The twigs had a weak
negative correlation between 1N2F content and temperature (r = −0.47) and insolation
(r = −0.37).

Among the other chemical constituents present in A. canelilla EOs, those that signif-
icantly correlated with climatic parameters were linalool with precipitation in the twigs
(r = −0.65), β-longipinene with insolation (r = 0.68) and precipitation (r = −0.64) in the
leaves, selin-11-en-4α-ol with temperature (r = −0.68), insolation (r = −0.55), and precipita-
tion (r = 0.72) in the twigs, and α-pinene with temperature (0.65) and insolation (r = 0.67).
The sesquiterpenes E-caryophyllene and caryophyllene oxide did not significantly correlate
with the climatic factors.
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Table 2. Chemical composition of Aniba canelilla essential oils in this seasonal study.

RIC RIL

August September October November December January February March April May June July

Class
Aniba canelilla L T L T L T L T L T L T L T L T L T L T L T L T

Oil Yields (%) 1.4 0.7 1.2 1.2 1.2 0.7 1.3 0.9 1.2 0.9 1.3 0.8 1.1 0.9 1.2 0.7 1.2 1.0 1.6 0.7 1.2 0.4 1.7 0.8

Oil Constituents (%) (%)

933 932 a α-pinene 0.3 2.2 0.1 0.2 0.8 2.2 0.3 1.0 0.8 0.6 0.3 0.2 0.6 0.1 tr 0.2 0.4 tr 0.1 2.2 0.1 tr 0.8 MH
948 946 a camphene tr 0.1 tr 0.1 tr tr tr tr tr 0.1 tr MH
958 952 a benzaldehyde 1.1 0.1 0.4 0.1 0.5 0.1 0.5 tr 1.2 0.1 0.7 0.8 1.0 0.7 0.5 tr 0.5 0.4 0.1 BZ
973 974 a sabinene tr 0.1 0.1 0.1 tr 0.6 tr 0.4 0.6 0.7 0.4 MH
977 974 a β-pinene 0.3 1.2 0.1 0.2 0.8 1.2 0.2 0.7 0.6 0.5 0.3 0.2 0.6 0.1 0.1 tr 0.2 0.3 tr 0.1 1.3 0.2 0.2 0.7 MH
984 983 b benzoic acid nitrile tr 0.2 0.2 0.2 tr 0.2 0.2 0.1 0.1 0.5 0.2 BZ
991 988 a myrcene 0.3 tr 0.3 0.1 0.1 0.1 tr tr 0.1 tr 0.1 MH
1006 1002 a α-phellandrene 0.1 0.1 0.1 tr tr tr MH
1011 1008 a δ-3-carene 0.2 0.2 0.1 0.1 tr tr tr tr 0.1 MH
1024 1020 a p-cymene 0.1 0.3 tr tr 0.1 0.3 tr 0.1 0.1 0.1 tr 0.1 0.1 0.1 tr 0.2 tr 0.1 MH
1028 1024 a limonene 0.1 tr 0.4 0.1 0.2 0.1 0.2 0.2 tr 0.5 tr MH
1029 1025 a β-phellandrene 1.1 0.2 1.1 0.6 0.4 0.3 0.1 0.6 MH
1031 1026 a 1.8-cineole 0.2 0.3 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 tr 0.1 tr 0.3 tr 0.1 OM
1036 1032 a Z-β-ocimene 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 MH
1041 1036 a benzene acetaldehyde 1.0 0.1 1.1 1.3 0.1 1.4 0.1 0.3 0.2 1.2 0.1 1.1 0.1 0.6 0.6 1.7 tr 0.7 1.8 0.1 BZ
1046 1044 a E-β-ocimene 0.3 0.1 0.3 0.2 0.2 0.1 0.1 tr tr 0.2 MH
1058 1054 a γ-terpinene tr tr tr tr tr tr MH
1069 1059 a acetophenone 0.1 0.1 0.1 tr 0.1 BZ
1071 1067 a cis-linalool oxide 0.1 0.1 tr tr tr tr tr 0.1 tr tr 0.1 0.1 tr tr OM
1088 1084 a trans-linalool oxide 0.1 0.1 tr tr 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 tr 0.1 OM
1089 1086 a terpinolene 0.1 MH
1100 1095 a linalool 2.2 16.1 2.7 13.0 3.5 14.2 3.1 13.2 3.4 20.1 2.3 12.6 2.3 12.0 2.5 4.5 2.6 6.1 1.9 6.5 2.6 5.5 2.7 12.1 OM
1137 1134 a benzeneacetonitrile 0.3 0.2 0.3 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.1 BZ
1139 1135 a trans-pinocarveol 0.1 0.1 0.1 0.1 0.1 OM
1177 1174 a terpinen-4-ol tr 0.1 tr tr 0.1 0.1 0.1 0.1 0.1 tr 0.1 tr 0.1 0.1 tr tr MH
1190 1186 a α-terpineol 0.3 0.8 0.4 0.8 0.5 0.6 0.4 0.7 0.5 1.0 0.3 0.8 0.3 0.8 0.3 0.6 0.3 0.5 0.3 0.7 0.4 0.4 0.4 0.5 OM
1195 1195 a myrtenal 0.1 0.1 0.1 0.1 0.1 0.1 tr 0.1 OM
1228 1227 a nerol tr tr 0.1 0.1 tr 0.1 0.1 OM
1255 1249 a geraniol 0.2 tr 0.1 0.1 0.1 tr 0.2 tr 0.3 tr 0.3 0.1 0.3 0.2 0.2 0.3 tr OM
1256 1254 a 2-phenylethyl acetate tr 0.1 0.1 0.1 0.1 0.1 0.1 tr 0.1 tr 0.1 0.1 0.1 0.1 0.1 BZ

1308 1294 a 1-nitro-2-
phenylethane 80.4 71.9 80.2 81.7 71.9 75.2 75.3 77.7 74.6 71.3 81.2 75.6 68.0 82.0 85.2 89.9 85.0 87.9 83.1 85.6 76.2 89.8 83.7 79.8 BZ

1351 1345 a α-cubebene 0.1 0.1 tr 0.1 SH
1357 1356 a eugenol 0.2 0.6 0.5 0.7 0.3 0.7 0.3 0.6 0.3 0.6 0.3 0.6 0.4 0.8 0.2 0.9 0.2 0.9 0.3 1.0 0.1 0.8 0.2 0.5 BZ
1377 1374 a α-copaene 0.5 0.7 1.2 1.0 0.4 0.2 1.6 0.2 0.3 0.4 0.6 0.8 SH
1393 1389 a β-elemene tr tr 0.1 0.1 tr 0.1 tr tr SM
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Table 2. Cont.

RIC RIL

August September October November December January February March April May June July

Class
Aniba canelilla L T L T L T L T L T L T L T L T L T L T L T L T

Oil Yields (%) 1.4 0.7 1.2 1.2 1.2 0.7 1.3 0.9 1.2 0.9 1.3 0.8 1.1 0.9 1.2 0.7 1.2 1.0 1.6 0.7 1.2 0.4 1.7 0.8

Oil Constituents (%) (%)

1408 1400 a β-longipinene 1.9 0.6 2.5 1.0 1.5 0.1 0.6 0.7 0.6 2.4 4.8 SM
1420 1417 a E-caryophyllene 0.5 0.2 4.9 0.2 5.4 0.2 5.1 0.3 1.0 0.3 0.6 0.3 6.6 0.2 0.2 0.2 1.0 0.2 1.9 0.2 0.8 0.1 1.4 0.3 SM

1441 1439 a 2-phenylethyl
butanoate 0.1 0.1 0.1 0.1 BZ

1454 1452 a α-humulene 0.1 tr 0.5 0.7 tr 0.6 tr 0.3 tr 0.1 tr 0.6 tr 0.1 0.2 tr 0.3 0.5 tr SH

1487 1490 a 2-phenylethyl
3-methylbutanoate 0.1 0.1 0.1 0.3 0.2 0.2 0.4 0.1 0.2 0.2 BZ

1496 1498 a α-selinene 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 tr 0.1 0.1 SH
1509 1505 a β-bisabolene 0.1 0.1 0.2 0.1 0.1 0.1 0.2 tr 0.1 0.1 SH
1524 1521 a trans-calamenene 0.1 0.1 0.2 tr 0.1 SH
1525 1522 a δ-cadinene tr 0.1 0.2 0.2 tr 0.1 0.1 0.1 tr SH
1564 1561 a E-nerolidol 0.1 0.1 0.1 tr 0.1 tr 0.1 tr 0.1 0.1 0.1 0.1 tr 0.1 OS
1571 1565 a 3Z-hexenyl benzoate 0.1 0.1 0.1 0.1 BZ
1578 1577 a spathulenol 0.1 tr 0.1 tr 0.1 0.1 0.1 tr 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 OS
1584 1582 a caryophyllene oxide 5.1 0.2 3.4 4.9 0.2 4.9 0.3 5.2 0.3 4.5 0.3 5.6 0.2 4.8 0.1 5.4 0.2 5.5 0.4 4.2 0.2 0.7 0.3 OS
1588 1590 a β-copaen-4α-ol tr tr tr tr tr 0.1 0.1 OS
1599 1600 a guaiol tr 0.1 0.1 0.1 0.1 0.1 tr 0.1 0.1 tr 0.1 OS
1610 1608 a humulene epoxide II 0.4 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.2 0.3 tr 0.2 tr OS
1630 1627 a 1-epi-cubenol 0.1 tr tr 0.1 0.1 tr tr 0.1 0.1 tr 0.1 0.1 OS

1634 1639 a caryophylla-
4(12),8(13)-dien-5α-ol 0.3 0.2 0.3 0.3 0.8 0.2 tr OS

1637 1639 a caryophylla-
4(12),8(13)-dien-5β-ol 0.8 0.6 0.8 1.0 1.3 1.0 1.7 0.2 0.9 1.4 0.9 OS

1656 1651 a pogostol 1.0 1.0 1.0 1.9 0.6 1.8 OS
1656 1658 a selin-11-en-4α-ol 0.9 1.5 0.8 1.3 0.9 1.5 0.6 1.9 1.1 1.6 2.5 0.9 2.0 1.0 2.4 OS
1659 1661 a allo-himachalol 0.2 0.7 OS

1672 1668 a 14-hydroxy-9-epi-E-
caryophyllene 0.5 0.3 tr 0.4 0.4 OS

1669 1670 a bulnesol tr tr 0.1 0.1 0.1 0.1 0.1 0.1 OS
1678 1676 a mustakone 0.1 tr tr 0.1 OS
1759 1759 a cyclocolorenone 0.4 0.2 0.4 0.1 0.8 0.5 0.2 0.5 0.1 OS
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Table 2. Cont.

RIC RIL

August September October November December January February March April May June July

Class
Aniba canelilla L T L T L T L T L T L T L T L T L T L T L T L T

Oil Yields (%) 1.4 0.7 1.2 1.2 1.2 0.7 1.3 0.9 1.2 0.9 1.3 0.8 1.1 0.9 1.2 0.7 1.2 1.0 1.6 0.7 1.2 0.4 1.7 0.8

Oil Constituents (%) (%)

Monoterpene hydrocarbons 0.7 5.9 0.3 0.6 2.1 5.9 0.6 3.0 1.7 2.1 0.7 0.9 1.6 0.6 0.7 0.1 0.5 1.4 0.1 0.2 4.8 1.0 1.0 3.2
Oxygenated monoterpenes 2.9 17.6 3.3 14.0 4.5 15.2 3.9 14.4 4.0 21.8 2.8 14.0 3.3 13.5 3.0 5.3 2.9 6.8 2.3 7.7 3.5 5.8 3.2 12.8

Sesquiterpene hydrocarbons 3.2 0.3 7.2 0.2 10.5 0.2 8.2 0.4 3.4 0.5 1.7 0.5 9.5 0.2 1.1 0.3 1.9 0.2 2.6 0.4 4.2 0.1 7.8 0.5
Oxygenated sesquiterpenes 8.2 2.3 5.5 1.3 7.1 2.1 7.6 1.0 6.9 0.9 6.4 3.4 9.1 2.2 7.4 3.3 7.6 2.7 8.3 3.9 7.5 2.2 1.4 2.6

Benzenoids 83.1 73.1 82.5 82.4 74.4 76.3 77.9 78.8 77.0 72.5 84.1 76.7 70.8 83.1 87.5 91.0 86.6 88.9 85.8 87.0 78.8 90.8 86.8 80.8

Total 98.0 99.1 98.8 98.4 98.5 99.7 98.2 97.6 93.0 97.8 95.8 95.5 94.3 99.6 99.7 99.8 99.4 99.9 99.0 99.2 98.8 99.9 100.0 99.8

RIC = calculated retention index (Rtx-5ms column); RIL = literature retention index; a = Adams, 2007 [26]; b = Mondello, 2011 [27]; tr: traces (<0.1%); main constituents in bold,
n = 2 (standard deviation was less than 2.0); MH = monoterpene hydrocarbons; OM = oxygenated monoterpenes; SH = sesquiterpene hydrocarbons; OS: oxygenated sesquiterpenes;
BZ: benzenoids.
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leaves and twigs.

According to the statistically significant compounds classes, monoterpene hydrocar-
bons showed a moderate positive correlation with temperature (r = 0.69) and a strong posi-
tive correlation with insolation (r = 0.71) in the twigs. Oxygenated monoterpenoids showed
a strong positive correlation with temperature (r = 0.78) in the leaves and a moderate nega-
tive correlation with precipitation in the leaves (r = −0.60) and twigs (r = −0.63). Sesquiter-
pene hydrocarbons showed a strong positive correlation with temperature (r = 0.70) and
a strong negative correlation with precipitation (r = −0.70) in the leaves. Furthermore,
oxygenated sesquiterpenoids showed a strong negative correlation with the average tem-
perature (r = −0.70) in the twigs, and benzenoids showed a moderate negative correlation
with temperature (r = −0.58) and a moderate positive correlation with precipitation in the
leaves (r = 0.58) and twigs (r = 0.61).

Moreover, the highest amounts of 1N2F were obtained in March (F: 85.2%; T: 89.9%), a
month with the highest precipitation (527.4 mm) and lowest sunshine (105.4 h), according
to Figure 3.

The only seasonal study of A. canelilla reported in the literature indicated the presence
of methyleugenol in its essential oil, which was used in foods as a flavoring agent. However,
nowadays, methyleugenol is considered a carcinogen and mutagen with a strong link to
safrol [18,19].

1N2F and methyleugenol contents varied with the season in a specimen from Carajás,
southeast of Pará State [19]. During the rainy season, 1N2F showed higher amounts (95.3%)
than methyleugenol (17.7%). Therefore, in the dry season, methyleugenol presented higher
concentrations (45.8%) than 1N2F (39.0%). Comparing these results with the sample of
A. canelilla collected in the city of Belém, state of Pará, the specimen of this article can be
considered a natural and secure source of 1N2F.
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Furthermore, the specimen in this study was evaluated with an in vivo experiment,
where 1N2F increased antioxidant capacity and glutathione (GSH) concentrations, and
reduced lipid peroxidation (both peritoneal and plasma). The essential oil decreased
leukocyte migration induced by carrageenan, confirming its potential to treat inflammatory
diseases and oxidative stress [28].

The volatile constituents of EOs are produced by secretory cells that minimize the risk
of autotoxicity and allow the presence of high concentrations of secondary metabolites in
places where their defense function may be vital [24]. Furthermore, several factors can lead
to variations in the composition of secondary metabolites. Among these factors, seasonality
stands out, a term used to designate variations that occur due to different times of the
year [29].

Talking about the seasonal variation of Aniba species, the main chemical constituents
identified in the essential oils of A. parviflora (Meisn) Mez. leaves were the monoterpenes:
linalool, with variations from 14.07% (September) to 28.42% (March); α-phellandrene 5.66%
(September) to 14.87% (March); p-cymene 2.74% (September) to 17.54% (March); and the
oxygenated sesquiterpene spathulenol from 3.79% (December) to 7.0% (September) [30].
Thus, these findings show a great seasonal and intraspecific variation in the Aniba species.

2.3. Antioxidant Capacity vs. Environmental Conditions
DPPH Radical Scavenging

The A. canelilla oils, obtained from a twelve-month collection process of leaves and
twigs samples, showed a DPPH radical scavenging capacity with an average of 20.4 ± 5.0%
for the leaf oils and 36.0 ± 5.9% for the twigs, as shown in Table A2 and Figure 4. The
reaction kinetics were considered slow, with an average of 120 min. The highest per-
centage of inhibition of the DPPH radical was observed for the twig oils collected in
September (42.0 ± 1.3%), March (40.6± 1.0%), August and October (40.2± 1.3%), February
(39.8 ± 1.5), and April (37.2 ± 0.4). The total antioxidant capacity was expressed in values
equivalent to the standard Trolox. TEAC (mg.TE/g) of the leaf oils showed an average of
114.4 ± 27.7, which is about ten times as low as Trolox; however, the TEAC for the twig
oils showed an average of 203.0 ± 33.3, which is five times as low as Trolox. TEAC of the
leaves and twigs were statistically different in the Tukey test (p < 0.05).
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Based on Pearson’s correlation coefficient ® analysis, the antioxidant activity of
leaves showed no significant correlations with the major contents—1N2F (r = −0.197),
linalool (r = 0.200), and caryophyllene oxide (r =−0.084)—or with the climatic parameters—
insolation (r = −0.073), temperature (r = −0.127), rainfall (r = 0.159), and humidity
(r = 0.206). Also, the antioxidant activity of twigs showed no significant correlations
with the major contents—1N2F (r = −0.185), linalool (r = 0.103), and caryophyllene ox-
ide (r = −0.336)—or with the climatic parameters—insolation (r = −0.093), temperature
(r = −0.098), rainfall (r = 0.242), and humidity (r = 0.175).

A study of Aniba canelilla essential oils (110 to 1400 µg mL−1), obtained from Amazonas
and Pará state (northern Brazil) and using Trolox as the standard, demonstrated a DPPH
inhibition of 32.4 to 93.0%. For the methanolic extract (2 to 10 µg mL−1), the values
ranged from 29.8 to 92.6%. They also reported the antioxidant capacity of 1N2F (200 to
1000 µg mL−1) and Trolox (2 to 10 µg mL−1); the values ranged from 11.5 to 63.2% and 21.5
to 96.7%, respectively [22]. In addition, the ethanolic extract of A. canelilla bark obtained
from Pará state displayed optimum antioxidant activity (IC50 1.80 ± 0.16). The same
study demonstrated equivalence between the extract of A. canelilla and L-ascorbic acid. Its
antioxidant potential was attributed to the presence of phenolic compounds, capable of
interrupting the chain reactions caused by free radicals due to its ability to donate hydrogen
atoms [31].
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2.4. Multivariate Analysis of A. canelilla Leaf and Twig Essential Oils

Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were
performed using constituents with amounts above 2% in the EOs. The HCA and PCA plots
were made separately for the leaves and twigs of A. canelilla. By applying hierarchical
cluster analysis (HCA), it was possible to obtain the dendrogram that shows the three
groups formed with no similarity from A. canelilla leaf volatiles (see Figure 5).
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Group I includes the months of August, January, March, April, and May. Group II
presents September, November, October, December, February, and June. On the other hand,
group III only covers July.

The principal component analysis (PCA, Figure 6) elucidated 86.44% of the data
variability. PC1 explained 37.04% of the data and presented negative correlations with
1N2F (r = −2.31) and β-longipinene (r = −0.49), and presented positive correlations with
α-pinene (r = 1.24), linalool (r = 1.28), E-caryophyllene (r = 1.80), and caryophyllene
oxide (r = 1.09). The second component (PC2) explained 32.11% of variability and showed
negative correlations with 1N2F (r =−0.32), E-caryophyllene (r =−0.13), and caryophyllene
oxide (r =−2.50), and positive correlations with α-pinene (r = 1.07), linalool (r = 1.88), and β-
longipinene (r = 3.07). The third component (PC3) explained 17.29% of the data, presenting
negative correlations with linalool (r =−0.37) and E-caryophyllene (r =−1.99), and positive
correlations with α-pinene (r = 2.44), β-longipinene (r = 0.10), and caryophyllene oxide
(r = 1.00). In relation to the HCA, the PCA analysis confirmed the formation of three
distinct groups.

For the HCA of A. canelilla twigs, it was also possible to analyze the formation of
three distinct groups. Group I includes the months of August and October. Group II
presents the months of September, February, and January. Furthermore, group III comprises
the months of March, April, May, and June (see Figure 7).

Principal component analysis (PCA, Figure 8) elucidated 99.26% of the data variability.
PC1 explained 65.42% of the variability and presented negative correlations with 1N2F
(r = −2.45) and selin-11-en-4α-ol (r = −1.29), and presented positive correlations with α-
pinene (r = 1.92) and linalool (r = 2.43). The second component (PC2) explained 22.27% of
the variability, showing negative correlations with linalool (r =−0.06) and 1N2F (r =−0.28),
and showing positive correlations with α-pinene (r = 0.79) and selin-11-en-4α-ol (r = 1.59).
The third component (PC3) explained 11.57% of the data and showed negative correlations
with linalool (r = −0.61) and selin-11-en-4α-ol (r = −0.46), and positive correlations with
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α-pinene (r = 1.05) and 1N2F (r = 0.46). In relation to the HCA, PCA analysis confirmed the
formation of three distinct groups.
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PCA and HCA analysis of Aniba canelilla leaves and twigs did not differentiate oil
samples during the dry and rainy seasons. A previous study on the seasonality of essential
oils from Psidium friedrichsthalianum leaves from Brazil did not show a separation of samples
in the dry and rainy seasons [32]. Some species present variation in the concentrations of
their constituents, but cannot be separated in chemometric analyses due to their metabolism
not correlating with biotic, abiotic factors, and climatic parameters, which can interfere
with metabolic pathways [33]. However, correlations were observed between climatic
parameters and oil constituents and their compound classes, as mentioned previously
(see Table 1).
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3. Material and Methods
3.1. Plant Material and Climatic Data

The leaves and twigs of A. canelilla were collected from a specimen from the city of
Belém, Pará state, Brazil (coordinates: 1◦27′20.3′′ S/48◦26′18.1′′ W). For this seasonal study,
leaves (200 g) and twigs (120 g) were sampled on the 10th day of each month at 10 a.m.
from August 2021 to July 2022. The specimen was collected in accordance with the Brazilian
legislation relating to the protection of biodiversity (Sisgen A704928).

The climatic parameters (insolation, temperature, and rainfall) of the mentioned
area were obtained monthly from the website of the National Institute of Meteorology
(INMET, http://www.inmet.gov.br/portal/, accessed on 31 August 2022, from the Brazilian
Government [34]).

3.2. Extraction and Oil Composition

The leaves and twigs were dried in a refrigerated room, ground, and subjected to
hydrodistillation (in duplicate) using a Clevenger-type apparatus (3 h) according to the
methodology described by Figueiredo et al. [35].

The chemical compositions of the obtained essential oils were analyzed with gas
chromatography–flame ionization detector (GC-FID, Shimadzu Corporation, Tokyo, Japan)
and gas chromatography–mass spectrometry (GC/MS, Shimadzu Corporation, Tokyo,
Japan) simultaneously [35].

The individual components were identified by comparing their retention indices and
mass spectra (molecular mass and fragmentation pattern) with the libraries of the GCMS-
Solution system [26,27]. The retention index was calculated for all volatile components
using a homologous series of C8-C40 n-alkanes (Sigma-Aldrich, Milwaukee, WI, USA)
according to the linear equation of van Den Dool and Kratz [36]. GC-FID and GC-MS
analyses were performed in duplicate.

3.3. Antioxidant Capacity
DPPH Radical Scavenging Method

The antioxidant capacity of the oils from seasonal samples was evaluated with the
DPPH radical scavenging method [37,38]. Each essential oil sample from this seasonal study
(5.0 µL, 10 mg/mL) was mixed with Tween 20 solution (0.5%, 50 µL, w/w) and then added

http://www.inmet.gov.br/portal/
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to DPPH (0.5 mM, 1 mL) in ethanol. The absorbance was measured in a spectrophotometer
(UltrospecTM 7000, Biochrom US, Holliston, MA, USA) at the beginning of the reaction,
every 5 min during the first 30 min, and then at 30 min intervals until constant absorbance
values were observed (reaction plateau, 2 h). Standard curves were prepared using Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; Sigma-Aldrich, St. Louis, MO,
USA), at concentrations of 30, 60, 150, 200, and 250 µg/mL and the same reaction mixture.
The DPPH inhibition percentage calculated the radical scavenging activity of each sample
according to the following equation, inhibition = 100 [(A − B)/A], where A and B are the
blank and sample absorbance values in the end reaction. The results were expressed in
milligrams of Trolox equivalents (mgTE/g) per gram of each sample. The total antioxidant
activity was expressed as milligrams of Trolox, calculated utilizing the following equation,
TE(mg/)g = [(A − B)/(A − C)] × [25/1000] × [250.29/1000] × [1000/10] × D, where A, B,
and C are the blank, sample, and Trolox absorbance values in the end reaction, respectively,
and D is the dilution factor. All experiments were triplicated.

3.4. Statistical Analysis

Statistical analysis was performed according to Santos et al. [23]. Statistical significance
was assessed using the Tukey test (p < 0.05). GraphPad Prism software, version 8.0, was
used to calculate Pearson’s correlation coefficients (r). Principal component analysis (PCA)
was applied to verify the inter-relationship in the oil components (>2%). Hierarchical
cluster analysis (HCA), considering Euclidean distance and complete linkage, was used to
verify the similarity of oil samples based on the distribution of constituents selected in the
previous PCA analysis.

4. Conclusions

The leaves showed higher essential oil yields than the twigs during this study. How-
ever, the yields showed no statistical difference between dry and rainy periods, indicating
that the essential oil from the specimen can be extracted throughout the year.

The major constituent identified throughout the seasonal period in the essential oils
from the leaves and twigs of Aniba canelilla was 1N2F. The results suggest that separating
the leaves from the twigs is unnecessary, considering that 1N2F is present in all parts of
the plant.

Methyleugenol was not identified in any of the study months—a fact described for
the first time—which makes the specimen a reliable source of 1N2F. Furthermore, the oils
from the twigs showed greater antioxidant capacity than those from the leaves. Therefore,
this work contributes to the knowledge of the pharmacological potential of the species and
encourages possible phytotherapeutic applications with the essential oils from the leaves
and twigs of A. canelilla.
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Appendix A

Table A1. Chemical constituents of Aniba canelilla essential oils in this seasonal study.

RIC RIL Oil Constituents (%) RT

933 932 a α-pinene 5.820
948 946 a camphene 6.225
958 952 a benzaldehyde 6.485
973 974 a sabinene 6.900
977 974 a β-pinene 7.020
984 983 b benzoic acid nitrile 7.180
991 988 a myrcene 7.375
1006 1002 a α-phellandrene 7.848
1011 1008 a δ-3-carene 8.035
1024 1020 a p-cymene 8.495
1028 1024 a limonene 8.650
1029 1025 a β-phellandrene 8.669
1031 1026 a 1.8-cineole 8.740
1036 1032 a Z-β-ocimene 8.933
1041 1036 a benzene acetaldehyde 9.125
1046 1044 a E-β-ocimene 9.309
1058 1054 a γ-terpinene 9.723
1069 1059 a acetophenone 10.145
1071 1067 a cis-linalool oxide 10.210
1088 1084 a trans-linalool oxide 10.805
1089 1086 a terpinolene 10.827
1100 1095 a linalool 11.240
1137 1134 a benzeneacetonitrile 12.770
1139 1135 a trans-pinocarveol 12.820
1177 1174 a terpinen-4-ol 14.435
1190 1186 a α-terpineol 14.990
1195 1195 a myrtenal 15.235
1228 1227 a nerol 16.565
1255 1249 a geraniol 17.690
1256 1254 a 2-phenylethyl acetate 17.795
1308 1294 a 1-nitro-2-phenylethane 19.803
1351 1345 a α-cubebene 21.810
1357 1356 a eugenol 22.110
1377 1374 a α-copaene 22.930
1393 1389 a β-elemene 23.605
1408 1400 a β-longipinene 24.230
1420 1417 a E-caryophyllene 24.728
1441 1439 a 2-phenylethyl butanoate 25.565
1454 1452 a α-humulene 26.096
1487 1490 a 2-phenylethyl 3-methylbutanoate 27.425
1496 1498 a α-selinene 27.815
1509 1505 a β-bisabolene 28.340
1524 1521 a trans-calamenene 28.920
1525 1522 a δ-cadinene 28.902
1564 1561 a E-nerolidol 30.455
1571 1565 a 3Z-hexenyl benzoate 30.710
1578 1577 a spathulenol 31.045
1584 1582 a caryophyllene oxide 31.203
1588 1590 a β-copaen-4α-ol 31.395
1599 1600 a guaiol 31.815
1610 1608 a humulene epoxide II 32.235
1630 1627 a 1-epi-cubenol 32.970
1634 1639 a caryophylla-4(12),8(13)-dien-5α-ol 33.090
1637 1639 a caryophylla-4(12),8(13)-dien-5β-ol 33.230
1656 1651 a pogostol 33.893
1656 1658 a selin-11-en-4α-ol 33.930
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Table A1. Cont.

RIC RIL Oil Constituents (%) RT

1659 1661 a allo-himachalol 34.025
1672 1668 a 14-hydroxy-9-epi-E-caryophyllene 34.540
1669 1670 a bulnesol 34.390
1678 1676 a mustakone 34.770
1759 1759 a cyclocolorenone 37.640

RIC = calculated retention index (Rtx-5ms column); RIL = literature retention index; a = Adams, 2007 [26];
b = Mondello, 2011 [27]; RT: retention time.

Table A2. DPPH radical scavenging of the monthly oils of Aniba canelilla.

Sample
Leaves Twigs

Inhibition
(%) *

TEAC
(mg.TE/g) *

Inhibition
(%) *

TEAC
(mg.TE/g) *

August 17.9 ± 1.3 a,d,e 11.8 ± 7.4 40.2 ± 1.3 a,e,g 226.8 ± 7.2
September 31.3 ± 0.5 b 174.3 ± 3.0 42.0 ± 3.9 a,b 236.6 ± 22.2

October 24.7 ± 1.3 c 138.6 ± 7.3 40.2 ± 1.3 a,b,e,g 226.8 ± 7.2
November 19.8 ± 1.0 d 110.8 ± 6.0 33.0 ± 0.9 c,h 186.2 ± 5.2
December 15.6 ± 0.5 e,f 87.0 ± 3.2 30.2 ± 1.2 c,d 170.4 ± 6.8

January 22.5 ± 0.6 c 126.2 ± 3.6 34.4 ± 1.1 c,d,h 193.9 ± 6.1
February 23.3 ± 0.8 c 130.3 ± 4.9 39.8 ± 1.5 a,b,e,g 224.5 ± 8.4

March 24.3 ± 1.1 c 136.3 ± 6.2 40.6 ± 1.0 a,b,e,g 229.2 ± 6.0
April 18.8 ± 0.4 a,d 105.3 ± 2.3 37.2 ± 0.4 a,b,h 210.1 ± 2.3
May 16.4 ± 1.0 a,e 91.9 ± 5.8 36.7 ± 2.2 e,h 206.8 ± 12.3
June 13.4 ± 0.3 f 74.9 ± 2.0 20.8 ± 1.0 f 117.6 ± 5.4
July 17.2 ± 0.3 a,d,e 96.6 ± 1.6 36.8 ± 0.9 g,h 207.7 ± 4.9

* Values are expressed as means ± standard deviations (n = 3). Values with the same letters in the column do not
differ statistically in the Tukey test (p > 0.05).
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