The chemical composition and antimicrobial activity of the leaf oil of *Cupressus Iusitanica* from Monteverde, Costa Rica

Sara L. Hassanzadeh, Jessika A. Tuten, Bernhard Vogler, William N. Setzer

Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Submitted: 06-10-2009

Revised: 19-11-2009

Published: 13-03-2010

ABSTRACT

The essential oils from the leaves of three different individuals of *Cupressus lusitanica* were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of *C. lusitanica* leaf oil were α -pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and *cis*-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against *Bacillus cereus* and antifungal activity against *Aspergillus niger*.

Key words: *cis*-muurola-4(14), 5-diene, α-pinene, antimicrobial, composition, *Cupressus lusitanica*, essential oil, isobornyl acetate, limonene

INTRODUCTION

There are 13 species of *Cupressus* (Cupressaceae) distributed throughout North America.^[1] *Cupressus lusitanica* Mill, known in Costa Rica as *ciprés*, normally ranges from central Mexico to Honduras but has been cultivated in other parts of the world. In Monteverde, it has been planted as a windbreak to protect dairy cows from harsh winds.^[2] The leaves of this plant are used to cure some skin diseases caused by dermatophytes and have also been used to ward off insects from stored grain.^[3] In Costa Rica, a drink made by steeping a branch in alcohol is taken to alleviate coughs and cold symptoms.^[4] Essential oil compositions of *C. lusitanica* from Portugal^[5,6] and from Cameroon^[3] have been reported, but these show wide variation. In this report, we present the leaf essential oil composition and antimicrobial activity of *C. lusitanica* from Monteverde, Costa Rica.

MATERIALS AND METHODS

Plant material

Leaves of *C. lusitanica* were collected from three different mature trees growing in Monteverde, Costa Rica

Address for correspondence:

Dr. William N. Setzer, Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA. E-mail: wsetzer@chemistry.uah.edu

DOI: 10.4103/0974-8490.60585

(10.3059 N, 84.8144W, 1380 m above sea level), on May 9, 2009. The plant was identified by William Setzer.^[2] The fresh leaves were chopped and hydrodistilled for 4 hours using a Likens-Nickerson hydrodistillation apparatus^[7] with continuous extraction with CHCl₃ (50 mL). The chloroform extract was then evaporated to yield yellow essential oils [Table 1].

Gas chromatographic-mass spectral analysis

A gas chromatographic-mass spectral analysis was performed on the essential oils of C. lusitanica using an Agilent 6890 GC with Agilent 5973 mass selective detector (EIMS, electron energy = 70 eV, scan range = 45-400 amu, and scan rate = 3.99 scans/s), and a fused silica capillary column (HP 5 ms, $30 \text{ m} \times 0.25 \text{ mm}$) coated with 5% phenyl-polymethylsiloxane (0.25 µm phase thickness). The carrier gas was helium with a flow rate of 1 mL/min, and the injection temperature was 200°C. The oven temperature was programmed to initially hold for 10 minutes at 40°C, then ramp to 200°C at 3°C/min and finally to 220°C at 2°C/min. The interface temperature was 280°C. A 1% w/v solution of each sample in CHCl₃ was prepared, and 1 µL was injected using a splitless injection technique. Identification of the oil components was based on their retention indices determined by reference to a homologous series of *n*-alkanes, and by comparison of their mass spectral fragmentation patterns with those reported in the literature,^[8] and stored on the MS library [NIST database (G1036A revision D.01.00)/ChemStation data system

Table 1: Yields and chemical compositions of <i>Cupressus lusitanica</i> leaf oils				
Collection		Tree A	Tree B	Tree C
Mass of fresh leaves (g)		121.0	144.7	132.0
Yield of leaf oil (mg)		379.7	859.6	368.2
Chemical composition RI	Compound		% Composition	
860	(37)-Hexenol	21	1 0	11
940	α-Pinene	82.3	39.9	60.0
953	Camphene	1.3	2.3	0.2
974	Sabinene	0.5	0.5	1.1
976	β-Pinene	0.4	1.5	1.6
992	Myrcene	1.6	2.9	2.7
1001	α-Phellandrene	-	tr	0.1
1013	δ-3-Carene	-	-	tr
1015	α-Terpinene	tr	0.2	1.3
1030	Limonene	4.2	17.6	8.4
1036	1,8-Cineole	tr	tr	tr
1043	2-Heptyl acetate	-	0.3	tr
1047	(<i>E</i>)-β-Ocimene	-	tr	tr
1058	γ-Terpinene	0.1	0.4	1.1
1088	Terpinolene	0.4	1.1	2.2
1094	2-Nonanone	-	0.6	tr
1105	Unidentified (C ₁₀ H ₁₆)	-	1.8	0.1
1132	Unidentified	-	0.8	0.7
1146	Campnor	-	1.0	-
1149	Isopulegol	-	0.1	-
1162	Isoborneol	tr tr	0.1	-
1107	Borneoi	u 0.4	0.3	- 0.7
1173		0.4	0.7	0.7 tr
1188		tr	0.0	0.2
1286	Isobornyl acetate	4.6	9.6	0.2
1351	a-Terninyl acetate	0.4	0.8	0.2
1390	B-Elemene	-	tr	tr
1419	(F)-Carvonhyllene	0.3	1.0	0.3
1449	cis-Muurola-3 5-diene	0.0	2.6	2.6
1453	α-Humulene	-	tr	tr
1468	cis-Muurola-4(14).5-diene	0.3	6.4	6.7
1483	Germacrene D		0.1	tr
1503	Epizonarene	tr	1.8	1.5
1513	α-Alaskene	tr	-	-
1516	β-Curcumene	0.3	0.3	0.2
1523	<i>trans</i> -Calamenene	-	tr	tr
1526	δ-Cadinene	-	0.4	0.6
1531	Zonarene	-	tr	tr
1549	<i>cis</i> -Muurol-5-en-4β-ol	-	0.1	0.2
1559	<i>cis</i> -Muurol-5-en-4 α -ol	-	0.1	0.2
1583	Caryophyllene oxide	tr	tr	-
1618	1,10-di- <i>epi</i> -Cubenol	-	tr	0.2
1632	α-Acorenol	0.3	tr	tr
1635	β-Acorenol	tr	tr	tr
1642	τ-Cadinol	-	tr	0.2
1654	α-Cadinol	-	0.3	0.8
1987	Manool oxide	-	tr	-
2125	Nezukol	-	2.6	4.0
2278	<i>cis</i> -Totarol	-	-	tr
2303	trans-Totarol	-	tr	0.1
	Iotal Identified	99.8	97.2	99.0
	Monoterpene hydrocarbons	90.7	68.1	78.9
	Oxygenated monoterpenoids	5.6	13.3	1.8
		1.0	12.5	11.9
	Oxygenated sesquiterpenoids	0.3	U.0 2 0	C.1
	Others	U.Z 2 1	2.ŏ 0.7	4.1
	Ouldis	۷.۱	2.1	1.0

(G1701CA, version C.00.01.080)]. The percentages of each component are reported as raw percentages based on total ion current without standardization. The chemical compositions of the *C. lusitanica* leaf oils are summarized in Table 1.

Antimicrobial screening

The essential oil was screened for antimicrobial activity against Gram-positive bacteria, Bacillus cereus (ATCC No. 14579) and Staphylococcus aureus (ATCC No. 29213); Gram-negative bacteria, Pseudomonas aeruginosa (ATCC No. 27853) and Escherichia coli (ATCC No. 10798). Minimum inhibitory concentrations (MICs) were determined using the microbroth dilution technique.^[9] Dilutions of the crude extracts were prepared in cation-adjusted Mueller Hinton broth (CAMHB) beginning with 50 µL of 1% w/w solutions of crude extracts in DMSO plus 50 µL CAMHB. The extract solutions were serially diluted (1:1) in CAMHB in 96-well plates. Organisms at a concentration of approximately 1.5×10^8 colony-forming units (CFU)/mL were added to each well. Plates were incubated at 37°C for 24 hours; the final minimum inhibitory concentration (MIC) was determined as the lowest concentration without turbidity. Geneticin was used as a positive antibiotic control; DMSO was used as a negative control. Antifungal activity was determined as described above using Candida albicans (ATCC No. 90028) in yeast-mold (YM) broth with concentration of approximately 7.5×10^7 CFU/mL. Antifungal activity against Aspergillus niger (ATCC No. 16888) was determined as above using YM broth inoculated with A. niger hyphal culture diluted to a McFarland turbidity of 1.0. Amphotericin B was the positive control.

RESULTS AND DISCUSSION

The hydrodistillation of the fresh leaves of *C. lusitanica* produced pale yellow essential oils in yields ranging from 0.28% to 0.58%. The main components in all three essential oils were monoterpene hydrocarbons, which included α -pinene (82.3%, 39.9% and 60.0%) and limonene (4.2%, 17.6% and 8.4%) as the major components. This is in contrast to essential oil compositions growing in Portugal

(dominated by the diterpene abietadiene, 11%-24%)^[6] or Cameroon (composed principally of umbellulone, 17%-18%).^[3] It is however qualitatively similar to the oil reported by Carmo and Frazão^[5] (18.0%, α-pinene; 13.2%, β-pinene + sabinene), but these workers had only identified 79% of the composition. *C. lusitanica* leaf oil (combined samples) was screened for antimicrobial activity against *Bacillus cereus* (MIC = 78 µg/mL), *Staphylococcus aureus* (MIC = 625 µg/mL), *Escherichia coli* (MIC = 1250 µg/mL), *Pseudomonas aeruginosa* (MIC = 1250 µg/mL), *C. andida albicans* (MIC = 625 µg/mL) and *Aspergillus niger* (MIC = 78 µg/mL). Thus, *C. lusitanica* leaf oil showed appreciable activity against the Gram-positive bacterium *B. cereus* and the mold *A. niger* only.

REFERENCES

- 1. Mabberly DJ. The Plant Book, 2nd Ed. Cambridge, UK: Cambridge University Press; 1997. p. 200-1.
- 2. Zuchowski W. A Guide to Tropical Plants of Costa Rica. Miami, Florida: Zona Tropical; 2005. p. 223-4.
- Kuiate JR, Bessiére JM, Vilarem G, Amvam Zollo PH. Chemical composition and antidermatophytic properties of the essential oils from leaves, flowers and fruits of *Cupressus lusitanica* Mill. from Cameroon. Flavour Fragr J 2006;21:693-7.
- Morton JF. Atlas of Medicinal Plants of Middle America, Vol. I. Springfield, Illinois: Charles C. Thomas Publisher; 1981. p. 21.
- Carmo MM, Frazão S. The essential oil of *Cupressus lusitanicus* Mill. Flavour Fragr J 1989;4:185-6.
- Adams RP, Zanoni TA, Lara A, Barrero AF, Cool LG. Comparisons among *Cupressus arizonica* Greene, *C. benthamii* Endl, *C. lindleyi* Klotz. ex Endl. and *C. lusitanica* Mill. using essential oils and DNA fingerprinting. J Essent Oil Res 1997;9:303-9.
- Likens ST, Nickerson GB. Determination of certain hop oil constituents in brewing products. Proc Am Soc Brew Chem 1964;5-13.
- Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed. Carol Stream, Illinois: Allured Publishing; 2007.
- Sahm DH, Washington JA. Antibacterial susceptibility tests: Dilution methods. In: Balows A, Hausler WJ, HerrmannKL, Isenberg HD, Shamody HJ, editors. Manual of Clinical Microbiology, 5th Ed. Washington DC: American Society for Microbiology; 1991.

Source of Support: Nil, Conflict of Interest: None declared.