

American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com

American Journal of Essential Oils and Natural Products

J

E

0

N

р

ISSN: 2321-9114 AJEONP 2017; 5(1): 15-17 © 2017 AkiNik Publications Received: 04-11-2016 Accepted: 05-12-2016

William N Setzer Department of Chemistry, University of Alabama in Huntsville, Huntsville, USA

**Prabodh Satyal** Department of Chemistry, University of Alabama in Huntsville, Huntsville, USA

William N. Setzer Department of Chemistry, University of Alabama in Huntsville, Huntsville, USA

Correspondence: William N Setzer Department of Chemistry, University of Alabama in Huntsville, Huntsville, USA

# Chemical composition of the bark essential oil of *Cercis* canadensis L. (Fabaceae)

# Kelly Marie Steinberg, Prabodh Satyal and William N Setzer

#### Abstract

The volatile components from the bark of *Cercis canadensis* L. (Fabaceae) were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry as well as enantioselective gas chromatography. The bark volatiles were dominated by C<sub>6</sub> fatty-acid-derived compounds 1-hexanol (23.3%), hexanoic acid (18.2%), and (2*E*)-hexenoic acid (3.4%). The concentration of monoterpenoids in *C. canadensis* bark was low (4.1%), but did allow determination of the enantiomeric distribution of  $\alpha$ -pinene (racemic), limonene (exclusively *d*-enantiomer), linalool and  $\alpha$ -terpineol (predominantly *l*-stereoisomers).

Keywords: Essential oil composition, Cercis canadensis, enantiomeric distribution, Native American ethnopharmacology

### 1. Introduction

*Cercis canadensis* L. (Fabaceae), commonly known as "eastern redbud", ranges throughout the southeastern United States. The tree was used by Native Americans for food as well as medicine. The bark of *C. canadensis* was used to make a tea as a remedy for whooping cough (pertussis), congestion, fever, and vomiting <sup>[1]</sup>. As part of our continuing interest in Cherokee traditional medicines <sup>[2-5]</sup>, we have investigated the essential oil composition, including enantiomeric distribution of monoterpenoids, of the bark of *C. canadensis*. To our knowledge, this is the first examination of the essential oil of *C. canadensis* and the first report of enantiomeric distribution of monoterpenoids in the Fabaceae.

# 2. Materials and Methods

#### 2.1 Plant Material

Branches of *C. canadensis* were collected from Huntsville, Alabama ( $34^{\circ} 38' 46''$  N,  $86^{\circ} 33' 27''$  W, 191 m elevation) on November 5, 2016. The bark was stripped from the limbs and finely chopped. The chopped bark (87.78 g) was hydrodistilled using a Likens-Nickerson apparatus, with continuous extraction with dichloromethane, for 4 h. *C. canadensis* bark essential oil (1.6709 g, 1.904% yield) was obtained as a colorless liquid, which was stored at – 20 °C until further analysis.

# 2.2 Gas Chromatography – Mass Spectrometry

GC-MS analysis was carried out using a Shimadzu GCMS-QP2010 Ultra. This instrument was operated in the electron impact (EI) mode set at electron energy 70eV with a scan range of 40-400 amu, a scan rate of 3.0 scans per second, and with GC-MS solution software. A ZB-5 fused silica capillary column with a (5% phenyl)-polymethylsiloxane stationary phase and a film thickness of 0.25  $\mu$ m was used as the GC column. Helium was used as the carrier gas and the pressure was set at 80 psi with a flow rate of 1.37 mL/min on the column head. The temperature of the injector was set at 250 °C and the temperature of the ion source was set at 200 °C. The temperature of the GC oven was programmed to be 50 °C initially and was programmed to increase at a rate of 2 °C/ min to a final temperature of 260 °C. The sample was prepared with CH<sub>2</sub>Cl<sub>2</sub> in a 5% w/v solution. Then, 0.1  $\mu$ L of the solution was injected into the instrument with the splitting mode with a split ratio of 30:1. The retention indices were determined by reference to a homologous series of *n*-alkanes. The components of each essential oil sample were identified based on their retention indices and mass spectral fragmentation patterns compared to reference literature <sup>[6]</sup> and our in-house library.

# 2.3 Chiral Gas Chromatography – Mass Spectrometry

The essential oil from *C. canadensis* was also analyzed enantioselectively with a Shimadzu GCMS-QP2010S. The instrument was operated in the EI mode with electron energy of 70 eV, a scan range of 40–400 amu, and a scan rate of 3.0 scans/s. The capillary column used was a Restek B-Dex 325 with film dimensions of 30 m × 0.25 mm ID × 0.25 µm. The temperature of the oven was programmed to start at 50 °C and to rise at a rate of 1.5 °C/min to a final temperature of 120 °C. Then, the oven was raised to 200 °C at a faster rate of 2 °C/min and maintained for 5 min. The carrier gas, helium, was set at a constant flow rate of 1.8 mL/min. A solution (0.1 µL) of 3% w/v of the essential oil in CH<sub>2</sub>Cl<sub>2</sub> was injected into the instrument in split mode with the split ratio of 1:45.

#### 3. Results and Discussion

The composition of *C. canadensis* bark essential oil is compiled in Table 1. A total of 57 compounds were identified in *C. canadensis* bark oil accounting for 97.9% of the composition. The essential oil was dominated by fatty acid-derived compounds (76.0%), including 1-hexanol (23.3%), hexanoic acid (18.2%), (2*E*)-hexenoic acid (3.4%), oleamide (3.2%), and 1-docosanol (3.0%). *n*-Alkanes (10.2%), and aromatics (5.5%), were also present. Fatty acids and fatty acid-derived alcohols and aldehydes have sometimes been shown to be a feature of essential oils of the Fabaceae. For example, the bark essential oil of *Cassia bakeriana* from Brazil revealed 51.3% fatty acids, 23.2% aldehydes, and 11.1% alcohols <sup>[7]</sup>; although it did not contain any C<sub>6</sub> compounds, the bark essential oil of *Inga laurina* from Brazil was composed of 46.8% fatty acids <sup>[8]</sup>; and the leaf essential

oil of *Robinia pseudoacacia* growing in Poland was composed of 65.1% aliphatic alcohols <sup>[9]</sup>.

Nakamura and Hatanaka have shown that  $C_6$  alcohols and aldehydes are bacteriostatic to several different strains of bacteria <sup>[10]</sup>, but, in general, longer chain alcohols are more active <sup>[11, 12]</sup>. Huang and co-workers have demonstrated that medium-chain fatty acids as well as long-chain fatty acids exhibit antimicrobial activity; hexanoic acid was particularly active against *Candida albicans*, *Fusobacterium nucleatum*, and *Streptococcus mutans* <sup>[13]</sup>.

Although the concentration of monoterpenoids was somewhat low, only 4.1%, it was possible to determine their enantiomeric distribution using chiral gas chromatography – mass spectrometry.  $\alpha$ -Pinene was present as a racemic mixture, but limonene was present as the pure (+)-enantiomer. The (–)-enantiomers were the major stereoisomers for linalool (65%) and  $\alpha$ -terpineol (70%). This, we believe, represents the first examination of the enantiomeric distribution of monoterpenoids in the Fabaceae.

### 4. Conclusions

The bark essential oil of *Cercis canadensis* was found to be rich in medium-chain and long-chain alcohols, aldehydes, and carboxylic acids, in particular C<sub>6</sub> compounds. The presence of these compounds may account for the traditional use of *C. canadensis* bark by the Cherokee and other Native Americans. Although monoterpenoid concentrations were low, the chiral gas chromatographic analysis was able to discern the relative enantiomeric concentrations of  $\alpha$ -pinene, limonene, linalool, and  $\alpha$ -terpineol.

Table 1: Volatile components of Cercis canadensis bark.

| RI <sup>a</sup> | Components                | %                | RI <sup>a</sup> | Components            | %    |
|-----------------|---------------------------|------------------|-----------------|-----------------------|------|
| 799             | Hexanal                   | 0.9              | 1349            | Eugenol               | 0.7  |
| 832             | 2-Methylbutanoic acid     | 1.0              | 1397            | Methyleugenol         | 0.6  |
| 844             | (3Z)-Hexenol              | 0.3              | 1418            | β-Caryophyllene       | 0.7  |
| 849             | (3E)-Hexenol              | 2.2              | 1446            | Geranyl acetone       | 0.5  |
| 859             | (2Z)-Hexenol              | 0.7              | 1508            | Dicyclohexyl ketone   | 0.5  |
| 862             | 1-Hexanol                 | 23.3             | 1580            | Caryophyllene oxide   | 1.1  |
| 885             | (4Z)-Hepten-2-ol          | 0.8              | 1600            | n-Hexadecane          | 0.6  |
| 900             | 2-Heptanol                | 1.7              | 1607            | 1,10-di-epi-Cubenol   | 0.7  |
| 931             | α-Pinene                  | 0.2 <sup>b</sup> | 1654            | α-Cadinol             | 0.9  |
| 967             | 1-Heptanol                | 0.6              | 1700            | n-Heptadecane         | 0.8  |
| 975             | Hexanoic acid             | 18.2             | 1793            | 1-Octadecene          | 0.5  |
| 977             | 1-Octen-3-ol              | 1.5              | 1800            | <i>n</i> -Octadecane  | 0.6  |
| 1003            | Octanal                   | 0.4              | 1894            | 1-Nonadecene          | 0.7  |
| 1008            | (2E)-Hexenoic acid        | 3.4              | 1900            | n-Nonadecane          | 0.9  |
| 1028            | Limonene                  | 2.0 <sup>c</sup> | 1956            | Palmitic acid         | 2.5  |
| 1032            | Benzyl alcohol            | 1.3              | 1986            | 1-Eicosene            | 0.7  |
| 1042            | Benzene acetaldehyde      | 1.0              | 2000            | n-Eicosane            | 0.8  |
| 1069            | 1-Octanol                 | 1.2              | 2100            | n-Heneicosane         | 2.7  |
| 1083            | o-Guaiacol                | 0.3              | 2110            | Methyl linoleate      | 1.2  |
| 1092            | Unidentified <sup>d</sup> | 2.1              | 2200            | <i>n</i> -Docosane    | 0.7  |
| 1099            | Linalool                  | 0.8 <sup>e</sup> | 2300            | <i>n</i> -Tricosane   | 0.9  |
| 1104            | Nonanal                   | 1.8              | 2371            | Oleamide              | 3.2  |
| 1111            | 2-Phenylethanol           | 0.6              | 2454            | Docosanal             | 0.7  |
| 1159            | (2E)-Nonenal              | 0.6              | 2517            | 1-Docosanol           | 3.0  |
| 1164            | Octanoic acid             | 1.1              | 2600            | n-Hexacosane          | 0.4  |
| 1194            | α-Terpineol               | 0.7 <sup>f</sup> | 2700            | <i>n</i> -Heptacosane | 0.6  |
| 1205            | Decanal                   | 1.2              | 2806            | (E,E,E)-Squalene      | 0.5  |
| 1230            | 2-Coumaranone             | 0.5              | 2900            | <i>n</i> -Nonacosane  | 1.2  |
| 1248            | Chavicol + Geraniol       | 0.8              |                 | Total Identified      | 97.8 |

<sup>a</sup> RI = "Retention Index", determined with respect to a series of *n*-alkanes on a ZB-5 column. <sup>b</sup> 50% (+)-α-pinene / 50% (-)-α-pinene. <sup>c</sup> 100% (+)-limonene. <sup>d</sup> Unidentified: MS, m/e 196(2%), 128(2%), 101(23%), 99(44%), 83(52%), 71(48%), 55(100%), 45(38%), 43(74%), 41(34%). <sup>c</sup> 35% (+)-linalool / 65% (-)-linalool. <sup>f</sup> 30% (+)-α-terpineol / 70% (-)-α-terpineol.

# 5. References

- 1 Moerman DE. Native American Ethnobotany. Timber Press, Portland, Oregon, 1998.
- 2 Woods KE, Chhetri BK, Jones CD, Goel N, Setzer WN. Bioactivities and compositions of *Betula nigra* essential oils. Journal of Medicinally Active Plants, 2013; 2(1):1-9.
- 3 Stewart CD, Jones CD, Setzer WN. Leaf essential oil compositions of *Rudbeckia fulgida* Aiton, *Rudbeckia hirta* L., and *Symphytotrichum novae-angliae* (L.) G.L. Nesom (Asteraceae). American Journal of Essential Oils and Natural Products, 2014; 2(1):36-38.
- 4 Stewart CD, Jones CD, Setzer WN. Essential oil compositions of *Juniperus virginiana* and *Pinus virginiana*, two important trees in Cherokee traditional medicine. American Journal of Essential Oils and Natural Products. 2014; 2(2):17-24.
- 5 Setzer WN. Chemical composition of the leaf essential oil of *Lindera benzoin* growing in north Alabama. American Journal of Essential Oils and Natural Products, 2016; 4(3):1-3.
- 6 Adams RP. Identification of Essential Oil Components by Gas Chromatography / Mass Spectrometry, 4th Ed., Allured Publishing Corporation, Carol Stream, Illinois.
- 7 Cunha LCS, de Morais SAL, Martins CHG, Martins MM, Chang R, de Aquino FJT *et al.* Chemical composition, cytotoxic and antimicrobial activity of essential oils from *Cassia bakeriana* Craib. against aerobic and anaerobic oral pathogens. Molecules, 2013; 18:4588-4598.
- 8 Furtado FB, de Aquino FJT, Nascimento EA, Martins CM, de Morais SAL, Chang R *et al.* Seasonal variation of the chemical composition and antimicrobial and cytotoxic activities of the essential oils from *Inga laurina* (Sw.) Willd. Molecules, 2014; 19:4560-4577.
- 9 Kicel A, Olszewska MA, Owczarek A, Wolbiś M. Preliminary study on the composition of volatile fraction of fresh flowers and leaves of *Robinia pseudoacacia* L. growing in Poland. Acta Poloniae Pharmaceutica – Drug Research, 2015; 72:1217-1222.
- 10 Nakamura S, Hatanaka A. Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both Gram-negative and Gram-positive bacteria. Journal of Agricultural and Food Chemistry, 2002; 50:7639-7644.
- 11 Kubo I, Muroi H, Kubo A. Antibacterial activity of longchain alcohols against *Streptococcus mutans*. Journal of Agricultural and Food Chemistry, 1993; 41:2447-2450.
- 12 Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK. Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiology Letters, 2012; 338:177-183.
- 13 Huang CB, Alimova Y, Myers TM, Ebersole JL. Shortand medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology, 2011; 56:650-654.